This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lecldbas.1 | |- F = ( x e. ran [,] |-> ( RR* \ x ) ) |
|
| Assertion | lecldbas | |- ( ordTop ` <_ ) = ( topGen ` ( fi ` ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lecldbas.1 | |- F = ( x e. ran [,] |-> ( RR* \ x ) ) |
|
| 2 | eqid | |- ran ( y e. RR* |-> ( y (,] +oo ) ) = ran ( y e. RR* |-> ( y (,] +oo ) ) |
|
| 3 | eqid | |- ran ( y e. RR* |-> ( -oo [,) y ) ) = ran ( y e. RR* |-> ( -oo [,) y ) ) |
|
| 4 | 2 3 | leordtval2 | |- ( ordTop ` <_ ) = ( topGen ` ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) ) |
| 5 | fvex | |- ( fi ` ran F ) e. _V |
|
| 6 | fvex | |- ( ordTop ` <_ ) e. _V |
|
| 7 | iccf | |- [,] : ( RR* X. RR* ) --> ~P RR* |
|
| 8 | ffn | |- ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) ) |
|
| 9 | 7 8 | ax-mp | |- [,] Fn ( RR* X. RR* ) |
| 10 | ovelrn | |- ( [,] Fn ( RR* X. RR* ) -> ( x e. ran [,] <-> E. a e. RR* E. b e. RR* x = ( a [,] b ) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( x e. ran [,] <-> E. a e. RR* E. b e. RR* x = ( a [,] b ) ) |
| 12 | difeq2 | |- ( x = ( a [,] b ) -> ( RR* \ x ) = ( RR* \ ( a [,] b ) ) ) |
|
| 13 | iccordt | |- ( a [,] b ) e. ( Clsd ` ( ordTop ` <_ ) ) |
|
| 14 | letopuni | |- RR* = U. ( ordTop ` <_ ) |
|
| 15 | 14 | cldopn | |- ( ( a [,] b ) e. ( Clsd ` ( ordTop ` <_ ) ) -> ( RR* \ ( a [,] b ) ) e. ( ordTop ` <_ ) ) |
| 16 | 13 15 | ax-mp | |- ( RR* \ ( a [,] b ) ) e. ( ordTop ` <_ ) |
| 17 | 12 16 | eqeltrdi | |- ( x = ( a [,] b ) -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
| 18 | 17 | rexlimivw | |- ( E. b e. RR* x = ( a [,] b ) -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
| 19 | 18 | rexlimivw | |- ( E. a e. RR* E. b e. RR* x = ( a [,] b ) -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
| 20 | 11 19 | sylbi | |- ( x e. ran [,] -> ( RR* \ x ) e. ( ordTop ` <_ ) ) |
| 21 | 1 20 | fmpti | |- F : ran [,] --> ( ordTop ` <_ ) |
| 22 | frn | |- ( F : ran [,] --> ( ordTop ` <_ ) -> ran F C_ ( ordTop ` <_ ) ) |
|
| 23 | 21 22 | ax-mp | |- ran F C_ ( ordTop ` <_ ) |
| 24 | 6 23 | ssexi | |- ran F e. _V |
| 25 | eqid | |- ( y e. RR* |-> ( y (,] +oo ) ) = ( y e. RR* |-> ( y (,] +oo ) ) |
|
| 26 | mnfxr | |- -oo e. RR* |
|
| 27 | fnovrn | |- ( ( [,] Fn ( RR* X. RR* ) /\ -oo e. RR* /\ y e. RR* ) -> ( -oo [,] y ) e. ran [,] ) |
|
| 28 | 9 26 27 | mp3an12 | |- ( y e. RR* -> ( -oo [,] y ) e. ran [,] ) |
| 29 | 26 | a1i | |- ( y e. RR* -> -oo e. RR* ) |
| 30 | id | |- ( y e. RR* -> y e. RR* ) |
|
| 31 | pnfxr | |- +oo e. RR* |
|
| 32 | 31 | a1i | |- ( y e. RR* -> +oo e. RR* ) |
| 33 | mnfle | |- ( y e. RR* -> -oo <_ y ) |
|
| 34 | pnfge | |- ( y e. RR* -> y <_ +oo ) |
|
| 35 | df-icc | |- [,] = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a <_ c /\ c <_ b ) } ) |
|
| 36 | df-ioc | |- (,] = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a < c /\ c <_ b ) } ) |
|
| 37 | xrltnle | |- ( ( y e. RR* /\ z e. RR* ) -> ( y < z <-> -. z <_ y ) ) |
|
| 38 | xrletr | |- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( z <_ y /\ y <_ +oo ) -> z <_ +oo ) ) |
|
| 39 | xrlelttr | |- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( -oo <_ y /\ y < z ) -> -oo < z ) ) |
|
| 40 | xrltle | |- ( ( -oo e. RR* /\ z e. RR* ) -> ( -oo < z -> -oo <_ z ) ) |
|
| 41 | 40 | 3adant2 | |- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( -oo < z -> -oo <_ z ) ) |
| 42 | 39 41 | syld | |- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( -oo <_ y /\ y < z ) -> -oo <_ z ) ) |
| 43 | 35 36 37 35 38 42 | ixxun | |- ( ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) /\ ( -oo <_ y /\ y <_ +oo ) ) -> ( ( -oo [,] y ) u. ( y (,] +oo ) ) = ( -oo [,] +oo ) ) |
| 44 | 29 30 32 33 34 43 | syl32anc | |- ( y e. RR* -> ( ( -oo [,] y ) u. ( y (,] +oo ) ) = ( -oo [,] +oo ) ) |
| 45 | iccmax | |- ( -oo [,] +oo ) = RR* |
|
| 46 | 44 45 | eqtrdi | |- ( y e. RR* -> ( ( -oo [,] y ) u. ( y (,] +oo ) ) = RR* ) |
| 47 | iccssxr | |- ( -oo [,] y ) C_ RR* |
|
| 48 | 35 36 37 | ixxdisj | |- ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( -oo [,] y ) i^i ( y (,] +oo ) ) = (/) ) |
| 49 | 26 31 48 | mp3an13 | |- ( y e. RR* -> ( ( -oo [,] y ) i^i ( y (,] +oo ) ) = (/) ) |
| 50 | uneqdifeq | |- ( ( ( -oo [,] y ) C_ RR* /\ ( ( -oo [,] y ) i^i ( y (,] +oo ) ) = (/) ) -> ( ( ( -oo [,] y ) u. ( y (,] +oo ) ) = RR* <-> ( RR* \ ( -oo [,] y ) ) = ( y (,] +oo ) ) ) |
|
| 51 | 47 49 50 | sylancr | |- ( y e. RR* -> ( ( ( -oo [,] y ) u. ( y (,] +oo ) ) = RR* <-> ( RR* \ ( -oo [,] y ) ) = ( y (,] +oo ) ) ) |
| 52 | 46 51 | mpbid | |- ( y e. RR* -> ( RR* \ ( -oo [,] y ) ) = ( y (,] +oo ) ) |
| 53 | 52 | eqcomd | |- ( y e. RR* -> ( y (,] +oo ) = ( RR* \ ( -oo [,] y ) ) ) |
| 54 | difeq2 | |- ( x = ( -oo [,] y ) -> ( RR* \ x ) = ( RR* \ ( -oo [,] y ) ) ) |
|
| 55 | 54 | rspceeqv | |- ( ( ( -oo [,] y ) e. ran [,] /\ ( y (,] +oo ) = ( RR* \ ( -oo [,] y ) ) ) -> E. x e. ran [,] ( y (,] +oo ) = ( RR* \ x ) ) |
| 56 | 28 53 55 | syl2anc | |- ( y e. RR* -> E. x e. ran [,] ( y (,] +oo ) = ( RR* \ x ) ) |
| 57 | xrex | |- RR* e. _V |
|
| 58 | 57 | difexi | |- ( RR* \ x ) e. _V |
| 59 | 1 58 | elrnmpti | |- ( ( y (,] +oo ) e. ran F <-> E. x e. ran [,] ( y (,] +oo ) = ( RR* \ x ) ) |
| 60 | 56 59 | sylibr | |- ( y e. RR* -> ( y (,] +oo ) e. ran F ) |
| 61 | 25 60 | fmpti | |- ( y e. RR* |-> ( y (,] +oo ) ) : RR* --> ran F |
| 62 | frn | |- ( ( y e. RR* |-> ( y (,] +oo ) ) : RR* --> ran F -> ran ( y e. RR* |-> ( y (,] +oo ) ) C_ ran F ) |
|
| 63 | 61 62 | ax-mp | |- ran ( y e. RR* |-> ( y (,] +oo ) ) C_ ran F |
| 64 | eqid | |- ( y e. RR* |-> ( -oo [,) y ) ) = ( y e. RR* |-> ( -oo [,) y ) ) |
|
| 65 | fnovrn | |- ( ( [,] Fn ( RR* X. RR* ) /\ y e. RR* /\ +oo e. RR* ) -> ( y [,] +oo ) e. ran [,] ) |
|
| 66 | 9 31 65 | mp3an13 | |- ( y e. RR* -> ( y [,] +oo ) e. ran [,] ) |
| 67 | df-ico | |- [,) = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a <_ c /\ c < b ) } ) |
|
| 68 | xrlenlt | |- ( ( y e. RR* /\ z e. RR* ) -> ( y <_ z <-> -. z < y ) ) |
|
| 69 | xrltletr | |- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( z < y /\ y <_ +oo ) -> z < +oo ) ) |
|
| 70 | xrltle | |- ( ( z e. RR* /\ +oo e. RR* ) -> ( z < +oo -> z <_ +oo ) ) |
|
| 71 | 70 | 3adant2 | |- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( z < +oo -> z <_ +oo ) ) |
| 72 | 69 71 | syld | |- ( ( z e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( z < y /\ y <_ +oo ) -> z <_ +oo ) ) |
| 73 | xrletr | |- ( ( -oo e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( -oo <_ y /\ y <_ z ) -> -oo <_ z ) ) |
|
| 74 | 67 35 68 35 72 73 | ixxun | |- ( ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) /\ ( -oo <_ y /\ y <_ +oo ) ) -> ( ( -oo [,) y ) u. ( y [,] +oo ) ) = ( -oo [,] +oo ) ) |
| 75 | 29 30 32 33 34 74 | syl32anc | |- ( y e. RR* -> ( ( -oo [,) y ) u. ( y [,] +oo ) ) = ( -oo [,] +oo ) ) |
| 76 | uncom | |- ( ( -oo [,) y ) u. ( y [,] +oo ) ) = ( ( y [,] +oo ) u. ( -oo [,) y ) ) |
|
| 77 | 75 76 45 | 3eqtr3g | |- ( y e. RR* -> ( ( y [,] +oo ) u. ( -oo [,) y ) ) = RR* ) |
| 78 | iccssxr | |- ( y [,] +oo ) C_ RR* |
|
| 79 | incom | |- ( ( y [,] +oo ) i^i ( -oo [,) y ) ) = ( ( -oo [,) y ) i^i ( y [,] +oo ) ) |
|
| 80 | 67 35 68 | ixxdisj | |- ( ( -oo e. RR* /\ y e. RR* /\ +oo e. RR* ) -> ( ( -oo [,) y ) i^i ( y [,] +oo ) ) = (/) ) |
| 81 | 26 31 80 | mp3an13 | |- ( y e. RR* -> ( ( -oo [,) y ) i^i ( y [,] +oo ) ) = (/) ) |
| 82 | 79 81 | eqtrid | |- ( y e. RR* -> ( ( y [,] +oo ) i^i ( -oo [,) y ) ) = (/) ) |
| 83 | uneqdifeq | |- ( ( ( y [,] +oo ) C_ RR* /\ ( ( y [,] +oo ) i^i ( -oo [,) y ) ) = (/) ) -> ( ( ( y [,] +oo ) u. ( -oo [,) y ) ) = RR* <-> ( RR* \ ( y [,] +oo ) ) = ( -oo [,) y ) ) ) |
|
| 84 | 78 82 83 | sylancr | |- ( y e. RR* -> ( ( ( y [,] +oo ) u. ( -oo [,) y ) ) = RR* <-> ( RR* \ ( y [,] +oo ) ) = ( -oo [,) y ) ) ) |
| 85 | 77 84 | mpbid | |- ( y e. RR* -> ( RR* \ ( y [,] +oo ) ) = ( -oo [,) y ) ) |
| 86 | 85 | eqcomd | |- ( y e. RR* -> ( -oo [,) y ) = ( RR* \ ( y [,] +oo ) ) ) |
| 87 | difeq2 | |- ( x = ( y [,] +oo ) -> ( RR* \ x ) = ( RR* \ ( y [,] +oo ) ) ) |
|
| 88 | 87 | rspceeqv | |- ( ( ( y [,] +oo ) e. ran [,] /\ ( -oo [,) y ) = ( RR* \ ( y [,] +oo ) ) ) -> E. x e. ran [,] ( -oo [,) y ) = ( RR* \ x ) ) |
| 89 | 66 86 88 | syl2anc | |- ( y e. RR* -> E. x e. ran [,] ( -oo [,) y ) = ( RR* \ x ) ) |
| 90 | 1 58 | elrnmpti | |- ( ( -oo [,) y ) e. ran F <-> E. x e. ran [,] ( -oo [,) y ) = ( RR* \ x ) ) |
| 91 | 89 90 | sylibr | |- ( y e. RR* -> ( -oo [,) y ) e. ran F ) |
| 92 | 64 91 | fmpti | |- ( y e. RR* |-> ( -oo [,) y ) ) : RR* --> ran F |
| 93 | frn | |- ( ( y e. RR* |-> ( -oo [,) y ) ) : RR* --> ran F -> ran ( y e. RR* |-> ( -oo [,) y ) ) C_ ran F ) |
|
| 94 | 92 93 | ax-mp | |- ran ( y e. RR* |-> ( -oo [,) y ) ) C_ ran F |
| 95 | 63 94 | unssi | |- ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) C_ ran F |
| 96 | fiss | |- ( ( ran F e. _V /\ ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) C_ ran F ) -> ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) C_ ( fi ` ran F ) ) |
|
| 97 | 24 95 96 | mp2an | |- ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) C_ ( fi ` ran F ) |
| 98 | tgss | |- ( ( ( fi ` ran F ) e. _V /\ ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) C_ ( fi ` ran F ) ) -> ( topGen ` ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) ) C_ ( topGen ` ( fi ` ran F ) ) ) |
|
| 99 | 5 97 98 | mp2an | |- ( topGen ` ( fi ` ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) ) C_ ( topGen ` ( fi ` ran F ) ) |
| 100 | 4 99 | eqsstri | |- ( ordTop ` <_ ) C_ ( topGen ` ( fi ` ran F ) ) |
| 101 | letop | |- ( ordTop ` <_ ) e. Top |
|
| 102 | tgfiss | |- ( ( ( ordTop ` <_ ) e. Top /\ ran F C_ ( ordTop ` <_ ) ) -> ( topGen ` ( fi ` ran F ) ) C_ ( ordTop ` <_ ) ) |
|
| 103 | 101 23 102 | mp2an | |- ( topGen ` ( fi ` ran F ) ) C_ ( ordTop ` <_ ) |
| 104 | 100 103 | eqssi | |- ( ordTop ` <_ ) = ( topGen ` ( fi ` ran F ) ) |