This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of +oo contains an unbounded interval based at a real number. Together with xrtgioo (which describes neighborhoods of RR ) and mnfnei , this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnfnei | ⊢ ( ( 𝐴 ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) | |
| 2 | eqid | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) | |
| 3 | eqid | ⊢ ran (,) = ran (,) | |
| 4 | 1 2 3 | leordtval | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) |
| 5 | 4 | eleq2i | ⊢ ( 𝐴 ∈ ( ordTop ‘ ≤ ) ↔ 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ) |
| 6 | tg2 | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ) | |
| 7 | elun | ⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ↔ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) ) | |
| 8 | elun | ⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ↔ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) | |
| 9 | eqid | ⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) | |
| 10 | 9 | elrnmpt | ⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) ) |
| 11 | 10 | elv | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) |
| 12 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 13 | 12 | a1i | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → -∞ ∈ ℝ* ) |
| 14 | simprl | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 ∈ ℝ* ) | |
| 15 | 0xr | ⊢ 0 ∈ ℝ* | |
| 16 | ifcl | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ) | |
| 17 | 14 15 16 | sylancl | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ) |
| 18 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 19 | 18 | a1i | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ ℝ* ) |
| 20 | xrmax1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) | |
| 21 | 15 14 20 | sylancr | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 22 | ge0gtmnf | ⊢ ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) → -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) | |
| 23 | 17 21 22 | syl2anc | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 24 | simpll | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ 𝑢 ) | |
| 25 | simprr | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑢 = ( 𝑦 (,] +∞ ) ) | |
| 26 | 24 25 | eleqtrd | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ ( 𝑦 (,] +∞ ) ) |
| 27 | elioc1 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( +∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) ) | |
| 28 | 14 18 27 | sylancl | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( +∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) ) |
| 29 | 26 28 | mpbid | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) |
| 30 | 29 | simp2d | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 < +∞ ) |
| 31 | 0ltpnf | ⊢ 0 < +∞ | |
| 32 | breq1 | ⊢ ( 𝑦 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 𝑦 < +∞ ↔ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) | |
| 33 | breq1 | ⊢ ( 0 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 0 < +∞ ↔ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) | |
| 34 | 32 33 | ifboth | ⊢ ( ( 𝑦 < +∞ ∧ 0 < +∞ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) |
| 35 | 30 31 34 | sylancl | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) |
| 36 | xrre2 | ⊢ ( ( ( -∞ ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) | |
| 37 | 13 17 19 23 35 36 | syl32anc | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
| 38 | xrmax2 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) | |
| 39 | 15 14 38 | sylancr | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 40 | df-ioc | ⊢ (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) | |
| 41 | xrlelttr | ⊢ ( ( 𝑦 ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < 𝑥 ) → 𝑦 < 𝑥 ) ) | |
| 42 | 40 40 41 | ixxss1 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ ( 𝑦 (,] +∞ ) ) |
| 43 | 14 39 42 | syl2anc | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ ( 𝑦 (,] +∞ ) ) |
| 44 | simplr | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑢 ⊆ 𝐴 ) | |
| 45 | 25 44 | eqsstrrd | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( 𝑦 (,] +∞ ) ⊆ 𝐴 ) |
| 46 | 43 45 | sstrd | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) |
| 47 | oveq1 | ⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 𝑥 (,] +∞ ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ) | |
| 48 | 47 | sseq1d | ⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( ( 𝑥 (,] +∞ ) ⊆ 𝐴 ↔ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) ) |
| 49 | 48 | rspcev | ⊢ ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ∧ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 50 | 37 46 49 | syl2anc | ⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 51 | 50 | rexlimdvaa | ⊢ ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 52 | 51 | com12 | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 53 | 11 52 | sylbi | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 54 | eqid | ⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) | |
| 55 | 54 | elrnmpt | ⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) ) |
| 56 | 55 | elv | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) |
| 57 | pnfnlt | ⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) | |
| 58 | elico1 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( +∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) ) ) | |
| 59 | 12 58 | mpan | ⊢ ( 𝑦 ∈ ℝ* → ( +∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) ) ) |
| 60 | simp3 | ⊢ ( ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) → +∞ < 𝑦 ) | |
| 61 | 59 60 | biimtrdi | ⊢ ( 𝑦 ∈ ℝ* → ( +∞ ∈ ( -∞ [,) 𝑦 ) → +∞ < 𝑦 ) ) |
| 62 | 57 61 | mtod | ⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ ∈ ( -∞ [,) 𝑦 ) ) |
| 63 | eleq2 | ⊢ ( 𝑢 = ( -∞ [,) 𝑦 ) → ( +∞ ∈ 𝑢 ↔ +∞ ∈ ( -∞ [,) 𝑦 ) ) ) | |
| 64 | 63 | notbid | ⊢ ( 𝑢 = ( -∞ [,) 𝑦 ) → ( ¬ +∞ ∈ 𝑢 ↔ ¬ +∞ ∈ ( -∞ [,) 𝑦 ) ) ) |
| 65 | 62 64 | syl5ibrcom | ⊢ ( 𝑦 ∈ ℝ* → ( 𝑢 = ( -∞ [,) 𝑦 ) → ¬ +∞ ∈ 𝑢 ) ) |
| 66 | 65 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ¬ +∞ ∈ 𝑢 ) |
| 67 | 66 | pm2.21d | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( +∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 68 | 67 | adantrd | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 69 | 56 68 | sylbi | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 70 | 53 69 | jaoi | ⊢ ( ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 71 | 8 70 | sylbi | ⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 72 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 73 | 72 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 74 | elssuni | ⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ∪ ran (,) ) | |
| 75 | unirnioo | ⊢ ℝ = ∪ ran (,) | |
| 76 | 74 75 | sseqtrrdi | ⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ ) |
| 77 | 76 | sseld | ⊢ ( 𝑢 ∈ ran (,) → ( +∞ ∈ 𝑢 → +∞ ∈ ℝ ) ) |
| 78 | 73 77 | mtoi | ⊢ ( 𝑢 ∈ ran (,) → ¬ +∞ ∈ 𝑢 ) |
| 79 | 78 | pm2.21d | ⊢ ( 𝑢 ∈ ran (,) → ( +∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 80 | 79 | adantrd | ⊢ ( 𝑢 ∈ ran (,) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 81 | 71 80 | jaoi | ⊢ ( ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 82 | 7 81 | sylbi | ⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 83 | 82 | rexlimiv | ⊢ ( ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 84 | 6 83 | syl | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 85 | 5 84 | sylanb | ⊢ ( ( 𝐴 ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |