This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccordt | ⊢ ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | ⊢ ( 𝐴 [,] 𝐵 ) = ( [,] ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | letsr | ⊢ ≤ ∈ TosetRel | |
| 3 | ledm | ⊢ ℝ* = dom ≤ | |
| 4 | 3 | ordtcld3 | ⊢ ( ( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) |
| 5 | 2 4 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) |
| 6 | 5 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
| 7 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 8 | 7 | fmpo | ⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ↔ [,] : ( ℝ* × ℝ* ) ⟶ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) |
| 9 | 6 8 | mpbi | ⊢ [,] : ( ℝ* × ℝ* ) ⟶ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
| 10 | letop | ⊢ ( ordTop ‘ ≤ ) ∈ Top | |
| 11 | 0cld | ⊢ ( ( ordTop ‘ ≤ ) ∈ Top → ∅ ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ∅ ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
| 13 | 9 12 | f0cli | ⊢ ( [,] ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
| 14 | 1 13 | eqeltri | ⊢ ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |