This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from the point A to the set S is greater than R iff the R -ball around A misses S . (Contributed by Mario Carneiro, 4-Sep-2015) (Proof shortened by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| Assertion | metdsge | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝐴 ∈ 𝑋 ) | |
| 3 | 1 | metdsval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ) |
| 4 | 2 3 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝐹 ‘ 𝐴 ) = inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ) |
| 5 | 4 | breq2d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹 ‘ 𝐴 ) ↔ 𝑅 ≤ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ) ) |
| 6 | simpll1 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | 2 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 8 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝑆 ⊆ 𝑋 ) | |
| 9 | 8 | sselda | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑋 ) |
| 10 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑤 ) ∈ ℝ* ) | |
| 11 | 6 7 9 10 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝐴 𝐷 𝑤 ) ∈ ℝ* ) |
| 12 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑤 ) ) | |
| 13 | 12 | cbvmptv | ⊢ ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) = ( 𝑤 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑤 ) ) |
| 14 | 11 13 | fmptd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) : 𝑆 ⟶ ℝ* ) |
| 15 | 14 | frnd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) ⊆ ℝ* ) |
| 16 | simpr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → 𝑅 ∈ ℝ* ) | |
| 17 | infxrgelb | ⊢ ( ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) ⊆ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) , ℝ* , < ) ↔ ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ) ) |
| 19 | 16 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → 𝑅 ∈ ℝ* ) |
| 20 | elbl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑤 ) < 𝑅 ) ) | |
| 21 | 6 19 7 9 20 | syl22anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 𝐷 𝑤 ) < 𝑅 ) ) |
| 22 | xrltnle | ⊢ ( ( ( 𝐴 𝐷 𝑤 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( 𝐴 𝐷 𝑤 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) | |
| 23 | 11 19 22 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐴 𝐷 𝑤 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
| 24 | 21 23 | bitrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ¬ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
| 25 | 24 | con2bid | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ↔ ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| 26 | 25 | ralbidva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ∀ 𝑤 ∈ 𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑆 ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| 27 | ovex | ⊢ ( 𝐴 𝐷 𝑤 ) ∈ V | |
| 28 | 27 | rgenw | ⊢ ∀ 𝑤 ∈ 𝑆 ( 𝐴 𝐷 𝑤 ) ∈ V |
| 29 | breq2 | ⊢ ( 𝑧 = ( 𝐴 𝐷 𝑤 ) → ( 𝑅 ≤ 𝑧 ↔ 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) | |
| 30 | 13 29 | ralrnmptw | ⊢ ( ∀ 𝑤 ∈ 𝑆 ( 𝐴 𝐷 𝑤 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ↔ ∀ 𝑤 ∈ 𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) ) |
| 31 | 28 30 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ↔ ∀ 𝑤 ∈ 𝑆 𝑅 ≤ ( 𝐴 𝐷 𝑤 ) ) |
| 32 | disj | ⊢ ( ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ↔ ∀ 𝑤 ∈ 𝑆 ¬ 𝑤 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) | |
| 33 | 26 31 32 | 3bitr4g | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ran ( 𝑦 ∈ 𝑆 ↦ ( 𝐴 𝐷 𝑦 ) ) 𝑅 ≤ 𝑧 ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) ) |
| 34 | 5 18 33 | 3bitrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝑅 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑅 ) ) = ∅ ) ) |