This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994) (Proof shortened by Wolf Lammen, 30-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difin0ss | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ∅ → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0 | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) | |
| 2 | iman | ⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ↔ ¬ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) | |
| 3 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ) | |
| 4 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 5 | 4 | anbi2ci | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 6 | annim | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 7 | 6 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 8 | 3 5 7 | 3bitri | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 9 | 2 8 | xchbinxr | ⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ↔ ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) ) |
| 10 | ax-2 | ⊢ ( ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) | |
| 11 | 9 10 | sylbir | ⊢ ( ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
| 12 | 11 | al2imi | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) ) |
| 13 | df-ss | ⊢ ( 𝐶 ⊆ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) | |
| 14 | df-ss | ⊢ ( 𝐶 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) | |
| 15 | 12 13 14 | 3imtr4g | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |
| 16 | 1 15 | sylbi | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ∅ → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |