This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If X is a compact metric space and U is an open cover of X , then there exists a positive real number d such that every ball of size d (and every subset of a ball of size d , including every subset of diameter less than d ) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015) (Proof shortened by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| Assertion | lebnum | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 5 | lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 6 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 8 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 10 | 9 5 | eqtr3d | ⊢ ( 𝜑 → ∪ 𝐽 = ∪ 𝑈 ) |
| 11 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | cmpcov | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) → ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑤 ) |
| 13 | 3 4 10 12 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑤 ) |
| 14 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ) | |
| 16 | 15 | elin1d | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ∈ 𝒫 𝑈 ) |
| 17 | 16 | elpwid | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ⊆ 𝑈 ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑤 ⊆ 𝑈 ) |
| 19 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ 𝑤 ) | |
| 20 | 18 19 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ 𝑈 ) |
| 21 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 22 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 23 | rpxr | ⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) | |
| 24 | 14 23 | mp1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℝ* ) |
| 25 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 1 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) | |
| 26 | 21 22 24 25 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) |
| 27 | sseq2 | ⊢ ( 𝑢 = 𝑋 → ( ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) ) | |
| 28 | 27 | rspcev | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑋 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) |
| 29 | 20 26 28 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) |
| 30 | 29 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) |
| 31 | oveq2 | ⊢ ( 𝑑 = 1 → ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) | |
| 32 | 31 | sseq1d | ⊢ ( 𝑑 = 1 → ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) ) |
| 33 | 32 | rexbidv | ⊢ ( 𝑑 = 1 → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) ) |
| 34 | 33 | ralbidv | ⊢ ( 𝑑 = 1 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) ) |
| 35 | 34 | rspcev | ⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ 𝑢 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 36 | 14 30 35 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ 𝑋 ∈ 𝑤 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 37 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 38 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝐽 ∈ Comp ) |
| 39 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑤 ⊆ 𝑈 ) |
| 40 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑈 ⊆ 𝐽 ) |
| 41 | 39 40 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑤 ⊆ 𝐽 ) |
| 42 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑋 = ∪ 𝐽 ) |
| 43 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ∪ 𝐽 = ∪ 𝑤 ) | |
| 44 | 42 43 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑋 = ∪ 𝑤 ) |
| 45 | 15 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → 𝑤 ∈ Fin ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → 𝑤 ∈ Fin ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ¬ 𝑋 ∈ 𝑤 ) | |
| 48 | eqid | ⊢ ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 49 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 50 | 1 37 38 41 44 46 47 48 49 | lebnumlem3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 51 | ssrexv | ⊢ ( 𝑤 ⊆ 𝑈 → ( ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) | |
| 52 | 39 51 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ( ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 53 | 52 | ralimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 54 | 53 | reximdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑤 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) ) |
| 55 | 50 54 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) ∧ ¬ 𝑋 ∈ 𝑤 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 56 | 36 55 | pm2.61dan | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑤 ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |
| 57 | 13 56 | rexlimddv | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑥 ∈ 𝑋 ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 ) ⊆ 𝑢 ) |