This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lebnum . The function F measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| lebnumlem1.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| lebnumlem1.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | ||
| lebnumlem1.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | ||
| Assertion | lebnumlem1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 5 | lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 6 | lebnumlem1.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 7 | lebnumlem1.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | |
| 8 | lebnumlem1.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 9 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑈 ∈ Fin ) |
| 10 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 11 | difssd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) | |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑈 ⊆ 𝐽 ) |
| 13 | 12 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ∈ 𝐽 ) |
| 14 | elssuni | ⊢ ( 𝑘 ∈ 𝐽 → 𝑘 ⊆ ∪ 𝐽 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ ∪ 𝐽 ) |
| 16 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 17 | 2 16 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑋 = ∪ 𝐽 ) |
| 21 | 15 20 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ 𝑋 ) |
| 22 | eleq1 | ⊢ ( 𝑘 = 𝑋 → ( 𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) | |
| 23 | 22 | notbid | ⊢ ( 𝑘 = 𝑋 → ( ¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 24 | 7 23 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈 ) ) |
| 25 | 24 | necon2ad | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ≠ 𝑋 ) |
| 28 | pssdifn0 | ⊢ ( ( 𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) | |
| 29 | 21 27 28 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 30 | eqid | ⊢ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 31 | 30 | metdsre | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 32 | 10 11 29 31 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 33 | 30 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ↔ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 34 | 32 33 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 35 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝑦 ∈ 𝑋 ) | |
| 36 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ → ( 𝑦 ∈ 𝑋 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) ) | |
| 37 | 34 35 36 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 38 | 9 37 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 39 | 5 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ 𝑈 ) ) |
| 40 | 39 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ∪ 𝑈 ) |
| 41 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝑈 ↔ ∃ 𝑚 ∈ 𝑈 𝑦 ∈ 𝑚 ) | |
| 42 | 40 41 | sylib | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑚 ∈ 𝑈 𝑦 ∈ 𝑚 ) |
| 43 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 ∈ ℝ ) | |
| 44 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑦 ∈ 𝑋 ) | |
| 45 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 46 | 45 | metdsval | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 47 | 44 46 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 48 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 49 | difssd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ) | |
| 50 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑈 ⊆ 𝐽 ) |
| 51 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ∈ 𝑈 ) | |
| 52 | 50 51 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ∈ 𝐽 ) |
| 53 | elssuni | ⊢ ( 𝑚 ∈ 𝐽 → 𝑚 ⊆ ∪ 𝐽 ) | |
| 54 | 52 53 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ⊆ ∪ 𝐽 ) |
| 55 | 48 16 18 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑋 = ∪ 𝐽 ) |
| 56 | 54 55 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ⊆ 𝑋 ) |
| 57 | eleq1 | ⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) | |
| 58 | 57 | notbid | ⊢ ( 𝑚 = 𝑋 → ( ¬ 𝑚 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 59 | 7 58 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑚 = 𝑋 → ¬ 𝑚 ∈ 𝑈 ) ) |
| 60 | 59 | necon2ad | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑈 → 𝑚 ≠ 𝑋 ) ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑚 ∈ 𝑈 → 𝑚 ≠ 𝑋 ) ) |
| 62 | 51 61 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑚 ≠ 𝑋 ) |
| 63 | pssdifn0 | ⊢ ( ( 𝑚 ⊆ 𝑋 ∧ 𝑚 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑚 ) ≠ ∅ ) | |
| 64 | 56 62 63 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) ≠ ∅ ) |
| 65 | 45 | metdsre | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑚 ) ≠ ∅ ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 66 | 48 49 64 65 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ℝ ) |
| 67 | 66 44 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 68 | 47 67 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 69 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 70 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 71 | 45 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 72 | 70 49 71 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 73 | 72 44 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 74 | elxrge0 | ⊢ ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) ) | |
| 75 | 73 74 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) ) |
| 76 | 75 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 ≤ ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) |
| 77 | elndif | ⊢ ( 𝑦 ∈ 𝑚 → ¬ 𝑦 ∈ ( 𝑋 ∖ 𝑚 ) ) | |
| 78 | 77 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ¬ 𝑦 ∈ ( 𝑋 ∖ 𝑚 ) ) |
| 79 | 55 | difeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) = ( ∪ 𝐽 ∖ 𝑚 ) ) |
| 80 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 81 | 70 80 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝐽 ∈ Top ) |
| 82 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 83 | 82 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 84 | 81 52 83 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ∪ 𝐽 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 85 | 79 84 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( 𝑋 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 86 | cldcls | ⊢ ( ( 𝑋 ∖ 𝑚 ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) = ( 𝑋 ∖ 𝑚 ) ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) = ( 𝑋 ∖ 𝑚 ) ) |
| 88 | 78 87 | neleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ¬ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) |
| 89 | 45 1 | metdseq0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑚 ) ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) ) |
| 90 | 70 49 44 89 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) ) |
| 91 | 90 | necon3abid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ≠ 0 ↔ ¬ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑚 ) ) ) ) |
| 92 | 88 91 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ≠ 0 ) |
| 93 | 67 76 92 | ne0gt0d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 < ( ( 𝑤 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑤 𝐷 𝑧 ) ) , ℝ* , < ) ) ‘ 𝑦 ) ) |
| 94 | 93 47 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 < inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 95 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 𝑈 ∈ Fin ) |
| 96 | 37 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ ) |
| 97 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 98 | 30 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 99 | 97 11 98 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 100 | 30 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 101 | 99 100 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 102 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝑋 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) → ( 𝑦 ∈ 𝑋 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) ) | |
| 103 | 101 35 102 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 104 | elxrge0 | ⊢ ( inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ( 0 [,] +∞ ) ↔ ( inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ) | |
| 105 | 103 104 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → ( inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ* ∧ 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ) |
| 106 | 105 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑈 ) → 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 107 | 106 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) ∧ 𝑘 ∈ 𝑈 ) → 0 ≤ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 108 | difeq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑋 ∖ 𝑘 ) = ( 𝑋 ∖ 𝑚 ) ) | |
| 109 | 108 | mpteq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) ) |
| 110 | 109 | rneqd | ⊢ ( 𝑘 = 𝑚 → ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) = ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) ) |
| 111 | 110 | infeq1d | ⊢ ( 𝑘 = 𝑚 → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) = inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 112 | 95 96 107 111 51 | fsumge1 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑚 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ≤ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 113 | 43 68 69 94 112 | ltletrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚 ) ) → 0 < Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 114 | 42 113 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 0 < Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) |
| 115 | 38 114 | elrpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ∈ ℝ+ ) |
| 116 | 115 8 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |