This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lebnum . As a finite sum of point-to-set distance functions, which are continuous by metdscn , the function F is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by AV, 30-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | ||
| lebnumlem1.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| lebnumlem1.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | ||
| lebnumlem1.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | ||
| lebnumlem2.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| Assertion | lebnumlem2 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lebnum.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | lebnum.d | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | lebnum.c | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | lebnum.s | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 5 | lebnum.u | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) | |
| 6 | lebnumlem1.u | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 7 | lebnumlem1.n | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) | |
| 8 | lebnumlem1.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 9 | lebnumlem2.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 10 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 11 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 13 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 16 | difssd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ) | |
| 17 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 | 17 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ∈ 𝐽 ) |
| 20 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑘 ∈ 𝐽 ) → 𝑘 ⊆ 𝑋 ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ⊆ 𝑋 ) |
| 22 | eleq1 | ⊢ ( 𝑘 = 𝑋 → ( 𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈 ) ) | |
| 23 | 22 | notbid | ⊢ ( 𝑘 = 𝑋 → ( ¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
| 24 | 7 23 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈 ) ) |
| 25 | 24 | necon2ad | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋 ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝑘 ≠ 𝑋 ) |
| 27 | pssdifn0 | ⊢ ( ( 𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) | |
| 28 | 21 26 27 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) |
| 29 | eqid | ⊢ ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) | |
| 30 | 29 1 10 | metdscn2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑘 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑘 ) ≠ ∅ ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 31 | 15 16 28 30 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑦 ∈ 𝑋 ↦ inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 32 | 10 14 6 31 | fsumcn | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑈 inf ( ran ( 𝑧 ∈ ( 𝑋 ∖ 𝑘 ) ↦ ( 𝑦 𝐷 𝑧 ) ) , ℝ* , < ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 33 | 8 32 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 34 | 10 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 35 | 34 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 36 | 1 2 3 4 5 6 7 8 | lebnumlem1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ+ ) |
| 37 | 36 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ+ ) |
| 38 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 39 | 37 38 | sstrdi | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 40 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 41 | 40 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 42 | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) | |
| 43 | 35 39 41 42 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 44 | 33 43 | mpbid | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 45 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 46 | 9 45 | eqtri | ⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 47 | 46 | oveq2i | ⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 48 | 44 47 | eleqtrrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |