This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumlt.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumlt.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| fsumlt.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fsumlt.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| fsumlt.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 < 𝐶 ) | ||
| Assertion | fsumlt | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumlt.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumlt.2 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 3 | fsumlt.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 4 | fsumlt.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 5 | fsumlt.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 < 𝐶 ) | |
| 6 | difrp | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 ↔ ( 𝐶 − 𝐵 ) ∈ ℝ+ ) ) | |
| 7 | 3 4 6 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 < 𝐶 ↔ ( 𝐶 − 𝐵 ) ∈ ℝ+ ) ) |
| 8 | 5 7 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℝ+ ) |
| 9 | 1 2 8 | fsumrpcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ∈ ℝ+ ) |
| 10 | 9 | rpgt0d | ⊢ ( 𝜑 → 0 < Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ) |
| 11 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 12 | 3 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 13 | 1 11 12 | fsumsub | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 14 | 10 13 | breqtrd | ⊢ ( 𝜑 → 0 < ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 15 | 1 3 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 16 | 1 4 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 ∈ ℝ ) |
| 17 | 15 16 | posdifd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝐴 𝐶 ↔ 0 < ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
| 18 | 14 17 | mpbird | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝐴 𝐶 ) |