This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| Assertion | metdsre | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | n0 | ⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑆 ) | |
| 3 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | 1 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 7 | 6 | ffnd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 Fn 𝑋 ) |
| 8 | 5 | adantr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 9 | simprr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑤 ∈ 𝑋 ) | |
| 10 | 8 9 | ffvelcdmd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ) |
| 11 | eliccxr | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ) |
| 13 | simpll | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 14 | simpr | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 15 | 14 | sselda | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑋 ) |
| 16 | 15 | adantrr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 17 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑤 ) ∈ ℝ ) | |
| 18 | 13 16 9 17 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑤 ) ∈ ℝ ) |
| 19 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑤 ) ) ) | |
| 20 | 19 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑤 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 21 | 10 20 | syl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → 0 ≤ ( 𝐹 ‘ 𝑤 ) ) |
| 22 | 1 | metdsle | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝑧 𝐷 𝑤 ) ) |
| 23 | 3 22 | sylanl1 | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝑧 𝐷 𝑤 ) ) |
| 24 | xrrege0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ∧ ( 𝑧 𝐷 𝑤 ) ∈ ℝ ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝑧 𝐷 𝑤 ) ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) | |
| 25 | 12 18 21 23 24 | syl22anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
| 26 | 25 | anassrs | ⊢ ( ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
| 27 | 26 | ralrimiva | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) |
| 28 | ffnfv | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ ↔ ( 𝐹 Fn 𝑋 ∧ ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ 𝑤 ) ∈ ℝ ) ) | |
| 29 | 7 27 28 | sylanbrc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 30 | 29 | ex | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑧 ∈ 𝑆 → 𝐹 : 𝑋 ⟶ ℝ ) ) |
| 31 | 30 | exlimdv | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑧 𝑧 ∈ 𝑆 → 𝐹 : 𝑋 ⟶ ℝ ) ) |
| 32 | 2 31 | biimtrid | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ≠ ∅ → 𝐹 : 𝑋 ⟶ ℝ ) ) |
| 33 | 32 | 3impia | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 : 𝑋 ⟶ ℝ ) |