This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of the empty set is 1. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmf0 | ⊢ ( lcm ‘ ∅ ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | ⊢ ∅ ⊆ ℤ | |
| 2 | 0fi | ⊢ ∅ ∈ Fin | |
| 3 | noel | ⊢ ¬ 0 ∈ ∅ | |
| 4 | 3 | nelir | ⊢ 0 ∉ ∅ |
| 5 | lcmfn0val | ⊢ ( ( ∅ ⊆ ℤ ∧ ∅ ∈ Fin ∧ 0 ∉ ∅ ) → ( lcm ‘ ∅ ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } , ℝ , < ) ) | |
| 6 | 1 2 4 5 | mp3an | ⊢ ( lcm ‘ ∅ ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } , ℝ , < ) |
| 7 | ral0 | ⊢ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 | |
| 8 | 7 | rgenw | ⊢ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 |
| 9 | rabid2 | ⊢ ( ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } ↔ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 ) | |
| 10 | 8 9 | mpbir | ⊢ ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } |
| 11 | 10 | eqcomi | ⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } = ℕ |
| 12 | 11 | infeq1i | ⊢ inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } , ℝ , < ) = inf ( ℕ , ℝ , < ) |
| 13 | nninf | ⊢ inf ( ℕ , ℝ , < ) = 1 | |
| 14 | 6 12 13 | 3eqtri | ⊢ ( lcm ‘ ∅ ) = 1 |