This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a set of integers divides any integer which is divisible by all elements of the set. (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfdvds | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝐾 ) ) | |
| 2 | 1 | ralbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) |
| 3 | breq2 | ⊢ ( 𝑘 = 𝐾 → ( ( lcm ‘ 𝑍 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
| 5 | 4 | rspccv | ⊢ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) → ( 𝐾 ∈ ℤ → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑍 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑍 ) lcm 𝑛 ) ) → ( 𝐾 ∈ ℤ → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
| 7 | lcmfunsnlem | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑍 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑍 ) lcm 𝑛 ) ) ) | |
| 8 | 6 7 | syl11 | ⊢ ( 𝐾 ∈ ℤ → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
| 9 | 8 | 3impib | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) |