This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcm1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) = ( abs ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcd1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) = 1 ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) = ( ( 𝑀 lcm 1 ) · 1 ) ) |
| 3 | 1z | ⊢ 1 ∈ ℤ | |
| 4 | lcmcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑀 lcm 1 ) ∈ ℕ0 ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) ∈ ℕ0 ) |
| 6 | 5 | nn0cnd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) ∈ ℂ ) |
| 7 | 6 | mulridd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 1 ) · 1 ) = ( 𝑀 lcm 1 ) ) |
| 8 | 2 7 | eqtr2d | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) = ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) ) |
| 9 | lcmgcd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) = ( abs ‘ ( 𝑀 · 1 ) ) ) | |
| 10 | 3 9 | mpan2 | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 lcm 1 ) · ( 𝑀 gcd 1 ) ) = ( abs ‘ ( 𝑀 · 1 ) ) ) |
| 11 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 12 | 11 | mulridd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 · 1 ) = 𝑀 ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ ( 𝑀 · 1 ) ) = ( abs ‘ 𝑀 ) ) |
| 14 | 8 10 13 | 3eqtrd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 1 ) = ( abs ‘ 𝑀 ) ) |