This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqreglem2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) → 𝐽 ∈ Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) → 𝐽 ∈ Top ) |
| 4 | simplr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → ( KQ ‘ 𝐽 ) ∈ Reg ) | |
| 5 | simpll | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 6 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) | |
| 7 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 9 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → 𝑤 ∈ 𝑧 ) | |
| 10 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → 𝑧 ⊆ 𝑋 ) | |
| 11 | 5 6 10 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → 𝑧 ⊆ 𝑋 ) |
| 12 | 11 9 | sseldd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → 𝑤 ∈ 𝑋 ) |
| 13 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑧 ) ) ) |
| 14 | 5 6 12 13 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → ( 𝑤 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑧 ) ) ) |
| 15 | 9 14 | mpbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑧 ) ) |
| 16 | regsep | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Reg ∧ ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑧 ) ) → ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) | |
| 17 | 4 8 15 16 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) |
| 18 | 5 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 | 1 | kqid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 20 | 18 19 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 21 | simprl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑛 ∈ ( KQ ‘ 𝐽 ) ) | |
| 22 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑛 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑛 ) ∈ 𝐽 ) | |
| 23 | 20 21 22 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ 𝑛 ) ∈ 𝐽 ) |
| 24 | 12 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ∈ 𝑋 ) |
| 25 | simprrl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ) | |
| 26 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 27 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑤 ∈ ( ◡ 𝐹 “ 𝑛 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ) ) ) | |
| 28 | 18 26 27 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( 𝑤 ∈ ( ◡ 𝐹 “ 𝑛 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ) ) ) |
| 29 | 24 25 28 | mpbir2and | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑛 ) ) |
| 30 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 31 | topontop | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( KQ ‘ 𝐽 ) ∈ Top ) | |
| 32 | 18 30 31 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( KQ ‘ 𝐽 ) ∈ Top ) |
| 33 | elssuni | ⊢ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) → 𝑛 ⊆ ∪ ( KQ ‘ 𝐽 ) ) | |
| 34 | 33 | ad2antrl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑛 ⊆ ∪ ( KQ ‘ 𝐽 ) ) |
| 35 | eqid | ⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) | |
| 36 | 35 | clscld | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Top ∧ 𝑛 ⊆ ∪ ( KQ ‘ 𝐽 ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 37 | 32 34 36 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 38 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 39 | 20 37 38 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 40 | 35 | sscls | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Top ∧ 𝑛 ⊆ ∪ ( KQ ‘ 𝐽 ) ) → 𝑛 ⊆ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) |
| 41 | 32 34 40 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑛 ⊆ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) |
| 42 | imass2 | ⊢ ( 𝑛 ⊆ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) → ( ◡ 𝐹 “ 𝑛 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ 𝑛 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ) |
| 44 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 45 | 44 | clsss2 | ⊢ ( ( ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ 𝐹 “ 𝑛 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ) |
| 46 | 39 43 45 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ) |
| 47 | simprrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) | |
| 48 | imass2 | ⊢ ( ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) ) |
| 50 | 6 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑧 ∈ 𝐽 ) |
| 51 | 1 | kqsat | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) = 𝑧 ) |
| 52 | 18 50 51 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) = 𝑧 ) |
| 53 | 49 52 | sseqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ) ⊆ 𝑧 ) |
| 54 | 46 53 | sstrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑛 ) ) ⊆ 𝑧 ) |
| 55 | eleq2 | ⊢ ( 𝑚 = ( ◡ 𝐹 “ 𝑛 ) → ( 𝑤 ∈ 𝑚 ↔ 𝑤 ∈ ( ◡ 𝐹 “ 𝑛 ) ) ) | |
| 56 | fveq2 | ⊢ ( 𝑚 = ( ◡ 𝐹 “ 𝑛 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) = ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑛 ) ) ) | |
| 57 | 56 | sseq1d | ⊢ ( 𝑚 = ( ◡ 𝐹 “ 𝑛 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) ⊆ 𝑧 ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑛 ) ) ⊆ 𝑧 ) ) |
| 58 | 55 57 | anbi12d | ⊢ ( 𝑚 = ( ◡ 𝐹 “ 𝑛 ) → ( ( 𝑤 ∈ 𝑚 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) ⊆ 𝑧 ) ↔ ( 𝑤 ∈ ( ◡ 𝐹 “ 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑛 ) ) ⊆ 𝑧 ) ) ) |
| 59 | 58 | rspcev | ⊢ ( ( ( ◡ 𝐹 “ 𝑛 ) ∈ 𝐽 ∧ ( 𝑤 ∈ ( ◡ 𝐹 “ 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑛 ) ) ⊆ 𝑧 ) ) → ∃ 𝑚 ∈ 𝐽 ( 𝑤 ∈ 𝑚 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 60 | 23 29 54 59 | syl12anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) ∧ ( 𝑛 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑛 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ∃ 𝑚 ∈ 𝐽 ( 𝑤 ∈ 𝑚 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 61 | 17 60 | rexlimddv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ 𝑧 ) ) → ∃ 𝑚 ∈ 𝐽 ( 𝑤 ∈ 𝑚 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 62 | 61 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) → ∀ 𝑧 ∈ 𝐽 ∀ 𝑤 ∈ 𝑧 ∃ 𝑚 ∈ 𝐽 ( 𝑤 ∈ 𝑚 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 63 | isreg | ⊢ ( 𝐽 ∈ Reg ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑧 ∈ 𝐽 ∀ 𝑤 ∈ 𝑧 ∃ 𝑚 ∈ 𝐽 ( 𝑤 ∈ 𝑚 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑚 ) ⊆ 𝑧 ) ) ) | |
| 64 | 3 62 63 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Reg ) → 𝐽 ∈ Reg ) |