This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqnrmlem1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) → ( KQ ‘ 𝐽 ) ∈ Nrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 4 | topontop | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( KQ ‘ 𝐽 ) ∈ Top ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) → ( KQ ‘ 𝐽 ) ∈ Top ) |
| 6 | simplr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → 𝐽 ∈ Nrm ) | |
| 7 | 1 | kqid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 9 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → 𝑧 ∈ ( KQ ‘ 𝐽 ) ) | |
| 10 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑧 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ) |
| 12 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) | |
| 13 | 12 | elin1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 14 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑤 ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) → ( ◡ 𝐹 “ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 16 | 12 | elin2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ 𝒫 𝑧 ) |
| 17 | elpwi | ⊢ ( 𝑤 ∈ 𝒫 𝑧 → 𝑤 ⊆ 𝑧 ) | |
| 18 | imass2 | ⊢ ( 𝑤 ⊆ 𝑧 → ( ◡ 𝐹 “ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) |
| 20 | nrmsep3 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑤 ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ 𝐹 “ 𝑤 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) | |
| 21 | 6 11 15 19 20 | syl13anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) |
| 22 | simplll | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 23 | simprl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑢 ∈ 𝐽 ) | |
| 24 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝐹 “ 𝑢 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( 𝐹 “ 𝑢 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 26 | simprrl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ) | |
| 27 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 28 | fnfun | ⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) | |
| 29 | 22 27 28 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → Fun 𝐹 ) |
| 30 | 13 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 31 | eqid | ⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) | |
| 32 | 31 | cldss | ⊢ ( 𝑤 ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) → 𝑤 ⊆ ∪ ( KQ ‘ 𝐽 ) ) |
| 33 | 30 32 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ⊆ ∪ ( KQ ‘ 𝐽 ) ) |
| 34 | toponuni | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) | |
| 35 | 22 2 34 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) |
| 36 | 33 35 | sseqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ⊆ ran 𝐹 ) |
| 37 | funimass1 | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ⊆ ran 𝐹 ) → ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 → 𝑤 ⊆ ( 𝐹 “ 𝑢 ) ) ) | |
| 38 | 29 36 37 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 → 𝑤 ⊆ ( 𝐹 “ 𝑢 ) ) ) |
| 39 | 26 38 | mpd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ⊆ ( 𝐹 “ 𝑢 ) ) |
| 40 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 41 | 22 40 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝐽 ∈ Top ) |
| 42 | elssuni | ⊢ ( 𝑢 ∈ 𝐽 → 𝑢 ⊆ ∪ 𝐽 ) | |
| 43 | 42 | ad2antrl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑢 ⊆ ∪ 𝐽 ) |
| 44 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 45 | 44 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 46 | 41 43 45 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 47 | 1 | kqcld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 48 | 22 46 47 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 49 | 44 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽 ) → 𝑢 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) |
| 50 | 41 43 49 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑢 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) |
| 51 | imass2 | ⊢ ( 𝑢 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) → ( 𝐹 “ 𝑢 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( 𝐹 “ 𝑢 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ) |
| 53 | 31 | clsss2 | ⊢ ( ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∧ ( 𝐹 “ 𝑢 ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ) |
| 54 | 48 52 53 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ) |
| 55 | simprrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) | |
| 56 | 44 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ∪ 𝐽 ) |
| 57 | 41 43 56 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ∪ 𝐽 ) |
| 58 | fndm | ⊢ ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 ) | |
| 59 | 22 27 58 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → dom 𝐹 = 𝑋 ) |
| 60 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 61 | 22 60 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 62 | 59 61 | eqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 63 | 57 62 | sseqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ dom 𝐹 ) |
| 64 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ⊆ 𝑧 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) | |
| 65 | 29 63 64 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ⊆ 𝑧 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) |
| 66 | 55 65 | mpbird | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ) ⊆ 𝑧 ) |
| 67 | 54 66 | sstrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑧 ) |
| 68 | sseq2 | ⊢ ( 𝑚 = ( 𝐹 “ 𝑢 ) → ( 𝑤 ⊆ 𝑚 ↔ 𝑤 ⊆ ( 𝐹 “ 𝑢 ) ) ) | |
| 69 | fveq2 | ⊢ ( 𝑚 = ( 𝐹 “ 𝑢 ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) = ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑢 ) ) ) | |
| 70 | 69 | sseq1d | ⊢ ( 𝑚 = ( 𝐹 “ 𝑢 ) → ( ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑧 ↔ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑧 ) ) |
| 71 | 68 70 | anbi12d | ⊢ ( 𝑚 = ( 𝐹 “ 𝑢 ) → ( ( 𝑤 ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑧 ) ↔ ( 𝑤 ⊆ ( 𝐹 “ 𝑢 ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑧 ) ) ) |
| 72 | 71 | rspcev | ⊢ ( ( ( 𝐹 “ 𝑢 ) ∈ ( KQ ‘ 𝐽 ) ∧ ( 𝑤 ⊆ ( 𝐹 “ 𝑢 ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑧 ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑤 ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 73 | 25 39 67 72 | syl12anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ ( ( ◡ 𝐹 “ 𝑤 ) ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ ( ◡ 𝐹 “ 𝑧 ) ) ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑤 ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 74 | 21 73 | rexlimddv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) ∧ ( 𝑧 ∈ ( KQ ‘ 𝐽 ) ∧ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑤 ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 75 | 74 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) → ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ∀ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑤 ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑧 ) ) |
| 76 | isnrm | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Nrm ↔ ( ( KQ ‘ 𝐽 ) ∈ Top ∧ ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ∀ 𝑤 ∈ ( ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∩ 𝒫 𝑧 ) ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( 𝑤 ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ 𝑧 ) ) ) | |
| 77 | 5 75 76 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Nrm ) → ( KQ ‘ 𝐽 ) ∈ Nrm ) |