This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqnrmlem1 | |- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> ( KQ ` J ) e. Nrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | 1 | kqtopon | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |
| 3 | 2 | adantr | |- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |
| 4 | topontop | |- ( ( KQ ` J ) e. ( TopOn ` ran F ) -> ( KQ ` J ) e. Top ) |
|
| 5 | 3 4 | syl | |- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> ( KQ ` J ) e. Top ) |
| 6 | simplr | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> J e. Nrm ) |
|
| 7 | 1 | kqid | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) |
| 8 | 7 | ad2antrr | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> F e. ( J Cn ( KQ ` J ) ) ) |
| 9 | simprl | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> z e. ( KQ ` J ) ) |
|
| 10 | cnima | |- ( ( F e. ( J Cn ( KQ ` J ) ) /\ z e. ( KQ ` J ) ) -> ( `' F " z ) e. J ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> ( `' F " z ) e. J ) |
| 12 | simprr | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) |
|
| 13 | 12 | elin1d | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> w e. ( Clsd ` ( KQ ` J ) ) ) |
| 14 | cnclima | |- ( ( F e. ( J Cn ( KQ ` J ) ) /\ w e. ( Clsd ` ( KQ ` J ) ) ) -> ( `' F " w ) e. ( Clsd ` J ) ) |
|
| 15 | 8 13 14 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> ( `' F " w ) e. ( Clsd ` J ) ) |
| 16 | 12 | elin2d | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> w e. ~P z ) |
| 17 | elpwi | |- ( w e. ~P z -> w C_ z ) |
|
| 18 | imass2 | |- ( w C_ z -> ( `' F " w ) C_ ( `' F " z ) ) |
|
| 19 | 16 17 18 | 3syl | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> ( `' F " w ) C_ ( `' F " z ) ) |
| 20 | nrmsep3 | |- ( ( J e. Nrm /\ ( ( `' F " z ) e. J /\ ( `' F " w ) e. ( Clsd ` J ) /\ ( `' F " w ) C_ ( `' F " z ) ) ) -> E. u e. J ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
|
| 21 | 6 11 15 19 20 | syl13anc | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> E. u e. J ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
| 22 | simplll | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> J e. ( TopOn ` X ) ) |
|
| 23 | simprl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> u e. J ) |
|
| 24 | 1 | kqopn | |- ( ( J e. ( TopOn ` X ) /\ u e. J ) -> ( F " u ) e. ( KQ ` J ) ) |
| 25 | 22 23 24 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " u ) e. ( KQ ` J ) ) |
| 26 | simprrl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( `' F " w ) C_ u ) |
|
| 27 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 28 | fnfun | |- ( F Fn X -> Fun F ) |
|
| 29 | 22 27 28 | 3syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> Fun F ) |
| 30 | 13 | adantr | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w e. ( Clsd ` ( KQ ` J ) ) ) |
| 31 | eqid | |- U. ( KQ ` J ) = U. ( KQ ` J ) |
|
| 32 | 31 | cldss | |- ( w e. ( Clsd ` ( KQ ` J ) ) -> w C_ U. ( KQ ` J ) ) |
| 33 | 30 32 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w C_ U. ( KQ ` J ) ) |
| 34 | toponuni | |- ( ( KQ ` J ) e. ( TopOn ` ran F ) -> ran F = U. ( KQ ` J ) ) |
|
| 35 | 22 2 34 | 3syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ran F = U. ( KQ ` J ) ) |
| 36 | 33 35 | sseqtrrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w C_ ran F ) |
| 37 | funimass1 | |- ( ( Fun F /\ w C_ ran F ) -> ( ( `' F " w ) C_ u -> w C_ ( F " u ) ) ) |
|
| 38 | 29 36 37 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( `' F " w ) C_ u -> w C_ ( F " u ) ) ) |
| 39 | 26 38 | mpd | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w C_ ( F " u ) ) |
| 40 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 41 | 22 40 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> J e. Top ) |
| 42 | elssuni | |- ( u e. J -> u C_ U. J ) |
|
| 43 | 42 | ad2antrl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> u C_ U. J ) |
| 44 | eqid | |- U. J = U. J |
|
| 45 | 44 | clscld | |- ( ( J e. Top /\ u C_ U. J ) -> ( ( cls ` J ) ` u ) e. ( Clsd ` J ) ) |
| 46 | 41 43 45 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) e. ( Clsd ` J ) ) |
| 47 | 1 | kqcld | |- ( ( J e. ( TopOn ` X ) /\ ( ( cls ` J ) ` u ) e. ( Clsd ` J ) ) -> ( F " ( ( cls ` J ) ` u ) ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 48 | 22 46 47 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " ( ( cls ` J ) ` u ) ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 49 | 44 | sscls | |- ( ( J e. Top /\ u C_ U. J ) -> u C_ ( ( cls ` J ) ` u ) ) |
| 50 | 41 43 49 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> u C_ ( ( cls ` J ) ` u ) ) |
| 51 | imass2 | |- ( u C_ ( ( cls ` J ) ` u ) -> ( F " u ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
|
| 52 | 50 51 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " u ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
| 53 | 31 | clsss2 | |- ( ( ( F " ( ( cls ` J ) ` u ) ) e. ( Clsd ` ( KQ ` J ) ) /\ ( F " u ) C_ ( F " ( ( cls ` J ) ` u ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
| 54 | 48 52 53 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
| 55 | simprrr | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) |
|
| 56 | 44 | clsss3 | |- ( ( J e. Top /\ u C_ U. J ) -> ( ( cls ` J ) ` u ) C_ U. J ) |
| 57 | 41 43 56 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) C_ U. J ) |
| 58 | fndm | |- ( F Fn X -> dom F = X ) |
|
| 59 | 22 27 58 | 3syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> dom F = X ) |
| 60 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 61 | 22 60 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> X = U. J ) |
| 62 | 59 61 | eqtrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> dom F = U. J ) |
| 63 | 57 62 | sseqtrrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) C_ dom F ) |
| 64 | funimass3 | |- ( ( Fun F /\ ( ( cls ` J ) ` u ) C_ dom F ) -> ( ( F " ( ( cls ` J ) ` u ) ) C_ z <-> ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
|
| 65 | 29 63 64 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( F " ( ( cls ` J ) ` u ) ) C_ z <-> ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
| 66 | 55 65 | mpbird | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " ( ( cls ` J ) ` u ) ) C_ z ) |
| 67 | 54 66 | sstrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) |
| 68 | sseq2 | |- ( m = ( F " u ) -> ( w C_ m <-> w C_ ( F " u ) ) ) |
|
| 69 | fveq2 | |- ( m = ( F " u ) -> ( ( cls ` ( KQ ` J ) ) ` m ) = ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) ) |
|
| 70 | 69 | sseq1d | |- ( m = ( F " u ) -> ( ( ( cls ` ( KQ ` J ) ) ` m ) C_ z <-> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) ) |
| 71 | 68 70 | anbi12d | |- ( m = ( F " u ) -> ( ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) <-> ( w C_ ( F " u ) /\ ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) ) ) |
| 72 | 71 | rspcev | |- ( ( ( F " u ) e. ( KQ ` J ) /\ ( w C_ ( F " u ) /\ ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) ) -> E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 73 | 25 39 67 72 | syl12anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 74 | 21 73 | rexlimddv | |- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 75 | 74 | ralrimivva | |- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> A. z e. ( KQ ` J ) A. w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 76 | isnrm | |- ( ( KQ ` J ) e. Nrm <-> ( ( KQ ` J ) e. Top /\ A. z e. ( KQ ` J ) A. w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) ) |
|
| 77 | 5 75 76 | sylanbrc | |- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> ( KQ ` J ) e. Nrm ) |