This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest ). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqcldsat | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 3 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 6 | noel | ⊢ ¬ ( 𝐹 ‘ 𝑧 ) ∈ ∅ | |
| 7 | elin | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) | |
| 8 | incom | ⊢ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ 𝑈 ) ) | |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | cldss | ⊢ ( 𝑈 ∈ ( Clsd ‘ 𝐽 ) → 𝑈 ⊆ ∪ 𝐽 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ ∪ 𝐽 ) |
| 12 | fndm | ⊢ ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 ) | |
| 13 | 2 12 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → dom 𝐹 = 𝑋 ) |
| 14 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 15 | 13 14 | eqtrd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → dom 𝐹 = ∪ 𝐽 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 17 | 11 16 | sseqtrrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ dom 𝐹 ) |
| 18 | 13 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → dom 𝐹 = 𝑋 ) |
| 19 | 17 18 | sseqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ 𝑋 ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑈 ⊆ 𝑋 ) |
| 21 | dfss4 | ⊢ ( 𝑈 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) = 𝑈 ) | |
| 22 | 20 21 | sylib | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) = 𝑈 ) |
| 23 | 22 | imaeq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) = ( 𝐹 “ 𝑈 ) ) |
| 24 | 23 | ineq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) ) = ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ 𝑈 ) ) ) |
| 25 | simpll | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 26 | 14 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑋 = ∪ 𝐽 ) |
| 27 | 26 | difeq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑈 ) = ( ∪ 𝐽 ∖ 𝑈 ) ) |
| 28 | 9 | cldopn | ⊢ ( 𝑈 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝑈 ) ∈ 𝐽 ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑈 ) ∈ 𝐽 ) |
| 30 | 27 29 | eqeltrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ) |
| 32 | 1 | kqdisj | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) ) = ∅ ) |
| 33 | 25 31 32 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( 𝑋 ∖ 𝑈 ) ) ) ) = ∅ ) |
| 34 | 24 33 | eqtr3d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ∩ ( 𝐹 “ 𝑈 ) ) = ∅ ) |
| 35 | 8 34 | eqtrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ) |
| 36 | 35 | eleq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ∅ ) ) |
| 37 | 7 36 | bitr3id | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ∅ ) ) |
| 38 | 6 37 | mtbiri | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ¬ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 39 | imnan | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) → ¬ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ↔ ¬ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) | |
| 40 | 38 39 | sylibr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) → ¬ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 41 | eldif | ⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ¬ 𝑧 ∈ 𝑈 ) ) | |
| 42 | 41 | baibr | ⊢ ( 𝑧 ∈ 𝑋 → ( ¬ 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ) ) |
| 44 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 45 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 ∖ 𝑈 ) ∈ 𝐽 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 46 | 25 31 44 45 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 ∖ 𝑈 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 47 | 43 46 | bitrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ 𝑧 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 48 | 47 | con1bid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ¬ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ↔ 𝑧 ∈ 𝑈 ) ) |
| 49 | 40 48 | sylibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) → 𝑧 ∈ 𝑈 ) ) |
| 50 | 49 | expimpd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) ) |
| 51 | 5 50 | sylbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) ) |
| 52 | 51 | ssrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ⊆ 𝑈 ) |
| 53 | sseqin2 | ⊢ ( 𝑈 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑈 ) = 𝑈 ) | |
| 54 | 17 53 | sylib | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( dom 𝐹 ∩ 𝑈 ) = 𝑈 ) |
| 55 | dminss | ⊢ ( dom 𝐹 ∩ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) | |
| 56 | 54 55 | eqsstrrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ) |
| 57 | 52 56 | eqssd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) = 𝑈 ) |