This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest ). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqcldsat | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( `' F " ( F " U ) ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 3 | elpreima | |- ( F Fn X -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( J e. ( TopOn ` X ) -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
| 5 | 4 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
| 6 | noel | |- -. ( F ` z ) e. (/) |
|
| 7 | elin | |- ( ( F ` z ) e. ( ( F " U ) i^i ( F " ( X \ U ) ) ) <-> ( ( F ` z ) e. ( F " U ) /\ ( F ` z ) e. ( F " ( X \ U ) ) ) ) |
|
| 8 | incom | |- ( ( F " U ) i^i ( F " ( X \ U ) ) ) = ( ( F " ( X \ U ) ) i^i ( F " U ) ) |
|
| 9 | eqid | |- U. J = U. J |
|
| 10 | 9 | cldss | |- ( U e. ( Clsd ` J ) -> U C_ U. J ) |
| 11 | 10 | adantl | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> U C_ U. J ) |
| 12 | fndm | |- ( F Fn X -> dom F = X ) |
|
| 13 | 2 12 | syl | |- ( J e. ( TopOn ` X ) -> dom F = X ) |
| 14 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 15 | 13 14 | eqtrd | |- ( J e. ( TopOn ` X ) -> dom F = U. J ) |
| 16 | 15 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> dom F = U. J ) |
| 17 | 11 16 | sseqtrrd | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> U C_ dom F ) |
| 18 | 13 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> dom F = X ) |
| 19 | 17 18 | sseqtrd | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> U C_ X ) |
| 20 | 19 | adantr | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> U C_ X ) |
| 21 | dfss4 | |- ( U C_ X <-> ( X \ ( X \ U ) ) = U ) |
|
| 22 | 20 21 | sylib | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( X \ ( X \ U ) ) = U ) |
| 23 | 22 | imaeq2d | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( F " ( X \ ( X \ U ) ) ) = ( F " U ) ) |
| 24 | 23 | ineq2d | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( F " ( X \ U ) ) i^i ( F " ( X \ ( X \ U ) ) ) ) = ( ( F " ( X \ U ) ) i^i ( F " U ) ) ) |
| 25 | simpll | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> J e. ( TopOn ` X ) ) |
|
| 26 | 14 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> X = U. J ) |
| 27 | 26 | difeq1d | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( X \ U ) = ( U. J \ U ) ) |
| 28 | 9 | cldopn | |- ( U e. ( Clsd ` J ) -> ( U. J \ U ) e. J ) |
| 29 | 28 | adantl | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( U. J \ U ) e. J ) |
| 30 | 27 29 | eqeltrd | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( X \ U ) e. J ) |
| 31 | 30 | adantr | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( X \ U ) e. J ) |
| 32 | 1 | kqdisj | |- ( ( J e. ( TopOn ` X ) /\ ( X \ U ) e. J ) -> ( ( F " ( X \ U ) ) i^i ( F " ( X \ ( X \ U ) ) ) ) = (/) ) |
| 33 | 25 31 32 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( F " ( X \ U ) ) i^i ( F " ( X \ ( X \ U ) ) ) ) = (/) ) |
| 34 | 24 33 | eqtr3d | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( F " ( X \ U ) ) i^i ( F " U ) ) = (/) ) |
| 35 | 8 34 | eqtrid | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( F " U ) i^i ( F " ( X \ U ) ) ) = (/) ) |
| 36 | 35 | eleq2d | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( F ` z ) e. ( ( F " U ) i^i ( F " ( X \ U ) ) ) <-> ( F ` z ) e. (/) ) ) |
| 37 | 7 36 | bitr3id | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( ( F ` z ) e. ( F " U ) /\ ( F ` z ) e. ( F " ( X \ U ) ) ) <-> ( F ` z ) e. (/) ) ) |
| 38 | 6 37 | mtbiri | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> -. ( ( F ` z ) e. ( F " U ) /\ ( F ` z ) e. ( F " ( X \ U ) ) ) ) |
| 39 | imnan | |- ( ( ( F ` z ) e. ( F " U ) -> -. ( F ` z ) e. ( F " ( X \ U ) ) ) <-> -. ( ( F ` z ) e. ( F " U ) /\ ( F ` z ) e. ( F " ( X \ U ) ) ) ) |
|
| 40 | 38 39 | sylibr | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( F ` z ) e. ( F " U ) -> -. ( F ` z ) e. ( F " ( X \ U ) ) ) ) |
| 41 | eldif | |- ( z e. ( X \ U ) <-> ( z e. X /\ -. z e. U ) ) |
|
| 42 | 41 | baibr | |- ( z e. X -> ( -. z e. U <-> z e. ( X \ U ) ) ) |
| 43 | 42 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( -. z e. U <-> z e. ( X \ U ) ) ) |
| 44 | simpr | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> z e. X ) |
|
| 45 | 1 | kqfvima | |- ( ( J e. ( TopOn ` X ) /\ ( X \ U ) e. J /\ z e. X ) -> ( z e. ( X \ U ) <-> ( F ` z ) e. ( F " ( X \ U ) ) ) ) |
| 46 | 25 31 44 45 | syl3anc | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( z e. ( X \ U ) <-> ( F ` z ) e. ( F " ( X \ U ) ) ) ) |
| 47 | 43 46 | bitrd | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( -. z e. U <-> ( F ` z ) e. ( F " ( X \ U ) ) ) ) |
| 48 | 47 | con1bid | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( -. ( F ` z ) e. ( F " ( X \ U ) ) <-> z e. U ) ) |
| 49 | 40 48 | sylibd | |- ( ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) /\ z e. X ) -> ( ( F ` z ) e. ( F " U ) -> z e. U ) ) |
| 50 | 49 | expimpd | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( ( z e. X /\ ( F ` z ) e. ( F " U ) ) -> z e. U ) ) |
| 51 | 5 50 | sylbid | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( z e. ( `' F " ( F " U ) ) -> z e. U ) ) |
| 52 | 51 | ssrdv | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( `' F " ( F " U ) ) C_ U ) |
| 53 | sseqin2 | |- ( U C_ dom F <-> ( dom F i^i U ) = U ) |
|
| 54 | 17 53 | sylib | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( dom F i^i U ) = U ) |
| 55 | dminss | |- ( dom F i^i U ) C_ ( `' F " ( F " U ) ) |
|
| 56 | 54 55 | eqsstrrdi | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> U C_ ( `' F " ( F " U ) ) ) |
| 57 | 52 56 | eqssd | |- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( `' F " ( F " U ) ) = U ) |