This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of imain for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqdisj | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | imadmres | ⊢ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) ) = ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) | |
| 3 | dmres | ⊢ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) = ( ( 𝐴 ∖ 𝑈 ) ∩ dom 𝐹 ) | |
| 4 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐹 Fn 𝑋 ) |
| 6 | 5 | fndmd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → dom 𝐹 = 𝑋 ) |
| 7 | 6 | ineq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐴 ∖ 𝑈 ) ∩ dom 𝐹 ) = ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) |
| 8 | 3 7 | eqtrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) = ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) |
| 9 | 8 | imaeq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐴 ∖ 𝑈 ) ) ) = ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ) |
| 10 | 2 9 | eqtr3id | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) = ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ) |
| 11 | indif1 | ⊢ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) = ( ( 𝐴 ∩ 𝑋 ) ∖ 𝑈 ) | |
| 12 | inss2 | ⊢ ( 𝐴 ∩ 𝑋 ) ⊆ 𝑋 | |
| 13 | ssdif | ⊢ ( ( 𝐴 ∩ 𝑋 ) ⊆ 𝑋 → ( ( 𝐴 ∩ 𝑋 ) ∖ 𝑈 ) ⊆ ( 𝑋 ∖ 𝑈 ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( ( 𝐴 ∩ 𝑋 ) ∖ 𝑈 ) ⊆ ( 𝑋 ∖ 𝑈 ) |
| 15 | 11 14 | eqsstri | ⊢ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ⊆ ( 𝑋 ∖ 𝑈 ) |
| 16 | imass2 | ⊢ ( ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ⊆ ( 𝑋 ∖ 𝑈 ) → ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) | |
| 17 | 15 16 | mp1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ ( ( 𝐴 ∖ 𝑈 ) ∩ 𝑋 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) |
| 18 | 10 17 | eqsstrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) |
| 19 | sslin | ⊢ ( ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) ⊆ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) ⊆ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ) |
| 21 | eldifn | ⊢ ( 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) → ¬ 𝑤 ∈ 𝑈 ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → ¬ 𝑤 ∈ 𝑈 ) |
| 23 | simpll | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 24 | simplr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) | |
| 25 | eldifi | ⊢ ( 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) → 𝑤 ∈ 𝑋 ) | |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → 𝑤 ∈ 𝑋 ) |
| 27 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 28 | 23 24 26 27 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → ( 𝑤 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 29 | 22 28 | mtbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ) → ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 31 | difss | ⊢ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑋 | |
| 32 | eleq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) | |
| 33 | 32 | notbid | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 34 | 33 | ralima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ ( 𝑋 ∖ 𝑈 ) ⊆ 𝑋 ) → ( ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 35 | 5 31 34 | sylancl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑈 ) ¬ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 36 | 30 35 | mpbird | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ) |
| 37 | disjr | ⊢ ( ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ↔ ∀ 𝑧 ∈ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ¬ 𝑧 ∈ ( 𝐹 “ 𝑈 ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ) |
| 39 | sseq0 | ⊢ ( ( ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) ⊆ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) ∧ ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑈 ) ) ) = ∅ ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) = ∅ ) | |
| 40 | 20 38 39 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∩ ( 𝐹 “ ( 𝐴 ∖ 𝑈 ) ) ) = ∅ ) |