This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmpfiiin.x | ⊢ 𝑋 = ∪ 𝐽 | |
| cmpfiiin.j | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| cmpfiiin.s | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| cmpfiiin.z | ⊢ ( ( 𝜑 ∧ ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ≠ ∅ ) | ||
| Assertion | cmpfiiin | ⊢ ( 𝜑 → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpfiiin.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cmpfiiin.j | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 3 | cmpfiiin.s | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 4 | cmpfiiin.z | ⊢ ( ( 𝜑 ∧ ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ≠ ∅ ) | |
| 5 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 7 | 1 | topcld | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 | 1 | cldss | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ 𝑋 ) |
| 10 | 3 9 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑆 ⊆ 𝑋 ) |
| 11 | 10 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) |
| 12 | riinint | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) | |
| 13 | 8 11 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) = ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) |
| 14 | 8 | snssd | ⊢ ( 𝜑 → { 𝑋 } ⊆ ( Clsd ‘ 𝐽 ) ) |
| 15 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) : 𝐼 ⟶ ( Clsd ‘ 𝐽 ) ) |
| 16 | 15 | frnd | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 17 | 14 16 | unssd | ⊢ ( 𝜑 → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 18 | elin | ⊢ ( 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ↔ ( 𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin ) ) | |
| 19 | elpwi | ⊢ ( 𝑙 ∈ 𝒫 𝐼 → 𝑙 ⊆ 𝐼 ) | |
| 20 | 19 | anim1i | ⊢ ( ( 𝑙 ∈ 𝒫 𝐼 ∧ 𝑙 ∈ Fin ) → ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) |
| 21 | 18 20 | sylbi | ⊢ ( 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) → ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) |
| 22 | nesym | ⊢ ( ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ≠ ∅ ↔ ¬ ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) | |
| 23 | 4 22 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin ) ) → ¬ ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) |
| 24 | 21 23 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ¬ ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) |
| 25 | 24 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) |
| 26 | elrfirn2 | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∀ 𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋 ) → ( ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) ) | |
| 27 | 8 11 26 | syl2anc | ⊢ ( 𝜑 → ( ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ↔ ∃ 𝑙 ∈ ( 𝒫 𝐼 ∩ Fin ) ∅ = ( 𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆 ) ) ) |
| 28 | 25 27 | mtbird | ⊢ ( 𝜑 → ¬ ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ) |
| 29 | cmpfii | ⊢ ( ( 𝐽 ∈ Comp ∧ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ⊆ ( Clsd ‘ 𝐽 ) ∧ ¬ ∅ ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ) ) → ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ≠ ∅ ) | |
| 30 | 2 17 28 29 | syl3anc | ⊢ ( 𝜑 → ∩ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐼 ↦ 𝑆 ) ) ≠ ∅ ) |
| 31 | 13 30 | eqnetrd | ⊢ ( 𝜑 → ( 𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆 ) ≠ ∅ ) |