This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptunimpt.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) | |
| Assertion | ptunimpt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptunimpt.j | ⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ) | |
| 2 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) | |
| 3 | 2 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) = 𝐾 ) |
| 4 | 3 | eqcomd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top ) → 𝐾 = ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
| 5 | 4 | unieqd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top ) → ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
| 6 | 5 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top → ∀ 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → ∀ 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
| 8 | ixpeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = X 𝑥 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = X 𝑥 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
| 10 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) | |
| 11 | 10 | nfuni | ⊢ Ⅎ 𝑥 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) |
| 12 | nfcv | ⊢ Ⅎ 𝑦 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) | |
| 13 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) | |
| 14 | 13 | unieqd | ⊢ ( 𝑦 = 𝑥 → ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) ) |
| 15 | 11 12 14 | cbvixp | ⊢ X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = X 𝑥 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑥 ) |
| 16 | 9 15 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) ) |
| 17 | 2 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) |
| 18 | 1 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) : 𝐴 ⟶ Top ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ∪ 𝐽 ) |
| 19 | 17 18 | sylan2b | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑦 ∈ 𝐴 ∪ ( ( 𝑥 ∈ 𝐴 ↦ 𝐾 ) ‘ 𝑦 ) = ∪ 𝐽 ) |
| 20 | 16 19 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐾 ∈ Top ) → X 𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽 ) |