This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an infinite Cartesian product. See df-ixp for discussion of the notation. (Contributed by NM, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elixp2 | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴 ) ) | |
| 2 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 4 | 3 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 5 | 1 4 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 6 | dfixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } | |
| 7 | 5 6 | elab2g | ⊢ ( 𝐹 ∈ V → ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 8 | 7 | pm5.32i | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 9 | elex | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐹 ∈ V ) | |
| 10 | 9 | pm4.71ri | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ) ) |
| 11 | 3anass | ⊢ ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝐹 ∈ V ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) | |
| 12 | 8 10 11 | 3bitr4i | ⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |