This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | boxriin | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → X 𝑥 ∈ 𝐼 𝐴 = ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑧 Fn 𝐼 ) | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 3 | 2 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 5 | 4 | impr | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 6 | eleq2 | ⊢ ( 𝐴 = if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) | |
| 7 | eleq2 | ⊢ ( 𝐵 = if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) | |
| 8 | simplr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) | |
| 9 | ssel2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 | 6 7 8 10 | ifbothda | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 12 | 11 | ex | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 13 | 12 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 15 | 14 | impr | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 16 | 1 15 | jca | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 17 | 16 | ralrimivw | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 18 | 1 5 17 | jca31 | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 19 | simprll | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → 𝑧 Fn 𝐼 ) | |
| 20 | simpr | ⊢ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) | |
| 21 | 20 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 22 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) | |
| 23 | iftrue | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 24 | 23 | equcoms | ⊢ ( 𝑦 = 𝑥 → if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 25 | 24 | eleq2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 26 | 25 | rspcva | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 27 | 26 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 28 | 22 27 | sylbi | ⊢ ( ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 29 | 21 28 | syl | ⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 30 | 29 | ad2antll | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 31 | 19 30 | jca | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 32 | 18 31 | impbida | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) ) |
| 33 | vex | ⊢ 𝑧 ∈ V | |
| 34 | 33 | elixp | ⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐴 ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 35 | elin | ⊢ ( 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) | |
| 36 | 33 | elixp | ⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 37 | eliin | ⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) | |
| 38 | 37 | elv | ⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 39 | 33 | elixp | ⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 40 | 39 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 41 | 38 40 | bitri | ⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 42 | 36 41 | anbi12i | ⊢ ( ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 43 | 35 42 | bitri | ⊢ ( 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 44 | 32 34 43 | 3bitr4g | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐴 ↔ 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 45 | 44 | eqrdv | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → X 𝑥 ∈ 𝐼 𝐴 = ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |