This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| absltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| abssubge0d.2 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| Assertion | abssuble0d | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | absltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | abssubge0d.2 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | abssuble0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |