This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfi | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐴 ⊆ ℂ ) | |
| 2 | cncfrss2 | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐵 ⊆ ℂ ) | |
| 3 | elcncf2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 6 | 5 | simprd | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝑤 − 𝑥 ) = ( 𝑤 − 𝐶 ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑥 = 𝐶 → ( abs ‘ ( 𝑤 − 𝑥 ) ) = ( abs ‘ ( 𝑤 − 𝐶 ) ) ) |
| 9 | 8 | breq1d | ⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 ) ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝑥 = 𝐶 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 13 | 12 | breq1d | ⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ) |
| 14 | 9 13 | imbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ) ) |
| 15 | 14 | rexralbidv | ⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ) ) |
| 16 | breq2 | ⊢ ( 𝑦 = 𝑅 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) | |
| 17 | 16 | imbi2d | ⊢ ( 𝑦 = 𝑅 → ( ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) ) |
| 18 | 17 | rexralbidv | ⊢ ( 𝑦 = 𝑅 → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) ) |
| 19 | 15 18 | rspc2v | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) ) |
| 20 | 6 19 | mpan9 | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+ ) ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) |
| 21 | 20 | 3impb | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑅 ) ) |