This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ivth . The set S of all x values with ( Fx ) less than U is lower bounded by A and upper bounded by B . (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | ||
| ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | ||
| ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | ||
| ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | ||
| ivth.10 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } | ||
| Assertion | ivthlem1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | |
| 4 | ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 5 | ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | |
| 7 | ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | |
| 9 | ivth.10 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } | |
| 10 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 11 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 12 | 1 2 4 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 13 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 14 | 10 11 12 13 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) ) |
| 17 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 18 | 16 17 14 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 19 | 8 | simpld | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) < 𝑈 ) |
| 20 | 18 3 19 | ltled | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) |
| 21 | 15 | breq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) ) |
| 22 | 21 9 | elrab2 | ⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) ) |
| 23 | 14 20 22 | sylanbrc | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 24 | 9 | ssrab3 | ⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 25 | 24 | sseli | ⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 | iccleub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ≤ 𝐵 ) | |
| 27 | 26 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → 𝑧 ≤ 𝐵 ) ) |
| 28 | 10 11 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → 𝑧 ≤ 𝐵 ) ) |
| 29 | 25 28 | syl5 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑆 → 𝑧 ≤ 𝐵 ) ) |
| 30 | 29 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) |
| 31 | 23 30 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |