This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intermediate value theorem, increasing case. This is Metamath 100 proof #79. (Contributed by Paul Chapman, 22-Jan-2008) (Proof shortened by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | ||
| ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | ||
| ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | ||
| ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | ||
| Assertion | ivth | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | |
| 4 | ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 5 | ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | |
| 7 | ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 10 | 9 | breq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ) ) |
| 11 | 10 | cbvrabv | ⊢ { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } |
| 12 | eqid | ⊢ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) = sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) | |
| 13 | 1 2 3 4 5 6 7 8 11 12 | ivthlem3 | ⊢ ( 𝜑 → ( sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ) = 𝑈 ) ) |
| 14 | fveqeq2 | ⊢ ( 𝑐 = sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑈 ↔ ( 𝐹 ‘ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ) = 𝑈 ) ) | |
| 15 | 14 | rspcev | ⊢ ( ( sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ∈ ( 𝐴 (,) 𝐵 ) ∧ ( 𝐹 ‘ sup ( { 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 } , ℝ , < ) ) = 𝑈 ) → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |
| 16 | 13 15 | syl | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑐 ) = 𝑈 ) |