This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ivth . Show that the supremum of S cannot be less than U . If it was, continuity of F implies that there are points just above the supremum that are also less than U , a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | ||
| ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | ||
| ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | ||
| ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | ||
| ivth.10 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } | ||
| ivth.11 | ⊢ 𝐶 = sup ( 𝑆 , ℝ , < ) | ||
| Assertion | ivthlem2 | ⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ivth.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ivth.3 | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | |
| 4 | ivth.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 5 | ivth.5 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) | |
| 6 | ivth.7 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) | |
| 7 | ivth.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 8 | ivth.9 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) | |
| 9 | ivth.10 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } | |
| 10 | ivth.11 | ⊢ 𝐶 = sup ( 𝑆 , ℝ , < ) | |
| 11 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 12 | 9 | ssrab3 | ⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 13 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 15 | 12 14 | sstrid | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 16 | 1 2 3 4 5 6 7 8 9 | ivthlem1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 18 | 17 | ne0d | ⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 19 | 16 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) |
| 20 | brralrspcev | ⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) | |
| 21 | 2 19 20 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) |
| 22 | 15 18 21 | suprcld | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
| 23 | 10 22 | eqeltrid | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 24 | 15 18 21 17 | suprubd | ⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 25 | 24 10 | breqtrrdi | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 26 | 15 18 21 | 3jca | ⊢ ( 𝜑 → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ) |
| 27 | suprleub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) | |
| 28 | 26 2 27 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |
| 29 | 19 28 | mpbird | ⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) |
| 30 | 10 29 | eqbrtrid | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
| 31 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 32 | 1 2 31 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 33 | 23 25 30 32 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 34 | 5 33 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → 𝐶 ∈ 𝐷 ) |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 37 | 36 | eleq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) ) |
| 38 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 39 | 37 38 33 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 40 | difrp | ⊢ ( ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ↔ ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) ) | |
| 41 | 39 3 40 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ↔ ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) ) |
| 42 | 41 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) |
| 43 | cncfi | ⊢ ( ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ∧ 𝐶 ∈ 𝐷 ∧ ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) | |
| 44 | 11 35 42 43 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 45 | ssralv | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) | |
| 46 | 5 45 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) |
| 48 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 49 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 50 | rphalfcl | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ+ ) | |
| 51 | 50 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑧 / 2 ) ∈ ℝ+ ) |
| 52 | 51 | rpred | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑧 / 2 ) ∈ ℝ ) |
| 53 | 49 52 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 + ( 𝑧 / 2 ) ) ∈ ℝ ) |
| 54 | 48 53 | ifcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ) |
| 55 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 56 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐴 ≤ 𝐶 ) |
| 57 | 8 | simprd | ⊢ ( 𝜑 → 𝑈 < ( 𝐹 ‘ 𝐵 ) ) |
| 58 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 59 | 58 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) ) |
| 60 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 61 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 62 | 1 2 4 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 63 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 64 | 60 61 62 63 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 65 | 59 38 64 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 66 | lttr | ⊢ ( ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) | |
| 67 | 39 3 65 66 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐶 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
| 68 | 57 67 | mpan2d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < 𝑈 → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
| 69 | 68 | imp | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) |
| 70 | 69 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) |
| 71 | 39 | ltnrd | ⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) |
| 72 | fveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 73 | 72 | breq2d | ⊢ ( 𝐵 = 𝐶 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 74 | 73 | notbid | ⊢ ( 𝐵 = 𝐶 → ( ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ↔ ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 75 | 71 74 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐵 = 𝐶 → ¬ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) ) ) |
| 76 | 75 | necon2ad | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐵 ≠ 𝐶 ) ) |
| 77 | 76 30 | jctild | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
| 78 | 23 2 | ltlend | ⊢ ( 𝜑 → ( 𝐶 < 𝐵 ↔ ( 𝐶 ≤ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) ) |
| 79 | 77 78 | sylibrd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐶 < 𝐵 ) ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ 𝐵 ) → 𝐶 < 𝐵 ) ) |
| 81 | 70 80 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 < 𝐵 ) |
| 82 | 49 51 | ltaddrpd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 < ( 𝐶 + ( 𝑧 / 2 ) ) ) |
| 83 | breq2 | ⊢ ( 𝐵 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( 𝐶 < 𝐵 ↔ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) | |
| 84 | breq2 | ⊢ ( ( 𝐶 + ( 𝑧 / 2 ) ) = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( 𝐶 < ( 𝐶 + ( 𝑧 / 2 ) ) ↔ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) | |
| 85 | 83 84 | ifboth | ⊢ ( ( 𝐶 < 𝐵 ∧ 𝐶 < ( 𝐶 + ( 𝑧 / 2 ) ) ) → 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
| 86 | 81 82 85 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
| 87 | 49 54 86 | ltled | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐶 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
| 88 | 55 49 54 56 87 | letrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) |
| 89 | min1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 + ( 𝑧 / 2 ) ) ∈ ℝ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) | |
| 90 | 48 53 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) |
| 91 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∧ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) ) ) | |
| 92 | 1 2 91 | syl2anc | ⊢ ( 𝜑 → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∧ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) ) ) |
| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ≤ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∧ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ 𝐵 ) ) ) |
| 94 | 54 88 90 93 | mpbir3and | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 95 | 49 54 87 | abssubge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) = ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) |
| 96 | rpre | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) | |
| 97 | 96 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → 𝑧 ∈ ℝ ) |
| 98 | 49 97 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 + 𝑧 ) ∈ ℝ ) |
| 99 | min2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 + ( 𝑧 / 2 ) ) ∈ ℝ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ ( 𝐶 + ( 𝑧 / 2 ) ) ) | |
| 100 | 48 53 99 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ≤ ( 𝐶 + ( 𝑧 / 2 ) ) ) |
| 101 | rphalflt | ⊢ ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) < 𝑧 ) | |
| 102 | 101 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝑧 / 2 ) < 𝑧 ) |
| 103 | 52 97 49 102 | ltadd2dd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( 𝐶 + ( 𝑧 / 2 ) ) < ( 𝐶 + 𝑧 ) ) |
| 104 | 54 53 98 100 103 | lelttrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) < ( 𝐶 + 𝑧 ) ) |
| 105 | 54 49 97 | ltsubadd2d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) < 𝑧 ↔ if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) < ( 𝐶 + 𝑧 ) ) ) |
| 106 | 104 105 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) < 𝑧 ) |
| 107 | 95 106 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ) |
| 108 | fvoveq1 | ⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( abs ‘ ( 𝑦 − 𝐶 ) ) = ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) ) | |
| 109 | 108 | breq1d | ⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ↔ ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ) ) |
| 110 | breq2 | ⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( 𝐶 < 𝑦 ↔ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) | |
| 111 | 109 110 | anbi12d | ⊢ ( 𝑦 = if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ↔ ( ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ∧ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) ) |
| 112 | 111 | rspcev | ⊢ ( ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ∈ ( 𝐴 [,] 𝐵 ) ∧ ( ( abs ‘ ( if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) − 𝐶 ) ) < 𝑧 ∧ 𝐶 < if ( 𝐵 ≤ ( 𝐶 + ( 𝑧 / 2 ) ) , 𝐵 , ( 𝐶 + ( 𝑧 / 2 ) ) ) ) ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) |
| 113 | 94 107 86 112 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) |
| 114 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) ) | |
| 115 | pm3.45 | ⊢ ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∧ 𝐶 < 𝑦 ) ) ) | |
| 116 | 115 | imp | ⊢ ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∧ 𝐶 < 𝑦 ) ) |
| 117 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝐶 < 𝑦 ) | |
| 118 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 119 | 118 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) ) |
| 120 | simplll | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝜑 ) | |
| 121 | 120 38 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 122 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 123 | 119 121 122 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 124 | 120 39 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 125 | 120 3 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑈 ∈ ℝ ) |
| 126 | 125 124 | resubcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ ) |
| 127 | 123 124 126 | absdifltd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ↔ ( ( ( 𝐹 ‘ 𝐶 ) − ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) ) ) |
| 128 | ltle | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) < 𝑈 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) | |
| 129 | 123 125 128 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < 𝑈 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
| 130 | 124 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 131 | 125 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑈 ∈ ℂ ) |
| 132 | 130 131 | pncan3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) = 𝑈 ) |
| 133 | 132 | breq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ↔ ( 𝐹 ‘ 𝑦 ) < 𝑈 ) ) |
| 134 | 118 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
| 135 | 134 9 | elrab2 | ⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
| 136 | 135 | baib | ⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
| 137 | 136 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑈 ) ) |
| 138 | 129 133 137 | 3imtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → 𝑦 ∈ 𝑆 ) ) |
| 139 | suprub | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ sup ( 𝑆 , ℝ , < ) ) | |
| 140 | 139 10 | breqtrrdi | ⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ 𝐶 ) |
| 141 | 140 | ex | ⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝑥 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ≤ 𝐶 ) ) |
| 142 | 120 26 141 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ∈ 𝑆 → 𝑦 ≤ 𝐶 ) ) |
| 143 | 120 14 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 144 | 143 122 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 145 | 120 23 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → 𝐶 ∈ ℝ ) |
| 146 | 144 145 | lenltd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ≤ 𝐶 ↔ ¬ 𝐶 < 𝑦 ) ) |
| 147 | 142 146 | sylibd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( 𝑦 ∈ 𝑆 → ¬ 𝐶 < 𝑦 ) ) |
| 148 | 138 147 | syld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ 𝐶 < 𝑦 ) ) |
| 149 | 148 | adantld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( ( ( 𝐹 ‘ 𝐶 ) − ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < ( ( 𝐹 ‘ 𝐶 ) + ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ) → ¬ 𝐶 < 𝑦 ) ) |
| 150 | 127 149 | sylbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) → ¬ 𝐶 < 𝑦 ) ) |
| 151 | 117 150 | mt2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ¬ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) |
| 152 | 151 | pm2.21d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 < 𝑦 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 153 | 152 | expr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 < 𝑦 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) ) |
| 154 | 153 | impcomd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ∧ 𝐶 < 𝑦 ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 155 | 116 154 | syl5 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 156 | 155 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 157 | 114 156 | syl5 | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) ∧ ∃ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 ∧ 𝐶 < 𝑦 ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 158 | 113 157 | mpan2d | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 159 | 47 158 | syld | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 160 | 159 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐷 ( ( abs ‘ ( 𝑦 − 𝐶 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝐶 ) ) ) < ( 𝑈 − ( 𝐹 ‘ 𝐶 ) ) ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) ) |
| 161 | 44 160 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) |
| 162 | 161 | pm2.01da | ⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝐶 ) < 𝑈 ) |