This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The S. integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsplit.i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | |
| itgsplit.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| itgsplit.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ 𝑉 ) | ||
| itgsplit.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| itgsplit.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | ||
| Assertion | itgsplit | ⊢ ( 𝜑 → ∫ 𝑈 𝐶 d 𝑥 = ( ∫ 𝐴 𝐶 d 𝑥 + ∫ 𝐵 𝐶 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsplit.i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) | |
| 2 | itgsplit.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 3 | itgsplit.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ 𝑉 ) | |
| 4 | itgsplit.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 5 | itgsplit.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) | |
| 6 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) | |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 8 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 9 | 8 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 10 | 9 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑈 ) |
| 11 | 10 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 12 | 7 11 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝐴 ∈ dom vol ) |
| 14 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
| 16 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 17 | 16 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 18 | 17 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
| 19 | 18 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
| 20 | 15 19 | mbfdm2 | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝐵 ∈ dom vol ) |
| 22 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
| 23 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 24 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 25 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 26 | 24 25 | bitrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 27 | 26 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
| 28 | 7 11 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 29 | 15 19 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 30 | 28 29 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 31 | 27 30 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
| 33 | ax-icn | ⊢ i ∈ ℂ | |
| 34 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℕ0 ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝑘 ∈ ℕ0 ) |
| 36 | expcl | ⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 37 | 33 35 36 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 39 | ine0 | ⊢ i ≠ 0 | |
| 40 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) | |
| 41 | 40 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → 𝑘 ∈ ℤ ) |
| 42 | expne0i | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) | |
| 43 | 33 39 41 42 | mp3an12i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( i ↑ 𝑘 ) ≠ 0 ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( i ↑ 𝑘 ) ≠ 0 ) |
| 45 | 32 38 44 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐶 / ( i ↑ 𝑘 ) ) ∈ ℂ ) |
| 46 | 45 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 47 | 0re | ⊢ 0 ∈ ℝ | |
| 48 | ifcl | ⊢ ( ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) | |
| 49 | 46 47 48 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) |
| 50 | 49 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ) |
| 51 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) | |
| 52 | 47 46 51 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 53 | elxrge0 | ⊢ ( if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ↔ ( if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 54 | 50 52 53 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝑈 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 55 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 56 | 55 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
| 57 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 58 | 57 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
| 59 | ifan | ⊢ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝑈 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 60 | 59 | mpteq2i | ⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑈 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
| 61 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 62 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 63 | 61 62 4 11 | iblitg | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 64 | 40 63 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 65 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 66 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) | |
| 67 | 65 66 5 19 | iblitg | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 68 | 40 67 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 69 | 13 21 22 23 54 56 58 60 64 68 | itg2split | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) |
| 70 | 69 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) ) |
| 71 | 63 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℂ ) |
| 72 | 40 71 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℂ ) |
| 73 | 68 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℂ ) |
| 74 | 37 72 73 | adddid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( i ↑ 𝑘 ) · ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) = ( ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) + ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) ) |
| 75 | 70 74 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) + ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) ) |
| 76 | 75 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) + ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) ) |
| 77 | fzfid | ⊢ ( 𝜑 → ( 0 ... 3 ) ∈ Fin ) | |
| 78 | 37 72 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ∈ ℂ ) |
| 79 | 37 73 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ∈ ℂ ) |
| 80 | 77 78 79 | fsumadd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) + ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) + Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) ) |
| 81 | 76 80 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) + Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) ) |
| 82 | eqid | ⊢ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) | |
| 83 | 82 | dfitg | ⊢ ∫ 𝑈 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝑈 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 84 | 82 | dfitg | ⊢ ∫ 𝐴 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 85 | 82 | dfitg | ⊢ ∫ 𝐵 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 86 | 84 85 | oveq12i | ⊢ ( ∫ 𝐴 𝐶 d 𝑥 + ∫ 𝐵 𝐶 d 𝑥 ) = ( Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) + Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) |
| 87 | 81 83 86 | 3eqtr4g | ⊢ ( 𝜑 → ∫ 𝑈 𝐶 d 𝑥 = ( ∫ 𝐴 𝐶 d 𝑥 + ∫ 𝐵 𝐶 d 𝑥 ) ) |