This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The S. integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgspliticc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| itgspliticc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| itgspliticc.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) | ||
| itgspliticc.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) → 𝐷 ∈ 𝑉 ) | ||
| itgspliticc.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐷 ) ∈ 𝐿1 ) | ||
| itgspliticc.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐷 ) ∈ 𝐿1 ) | ||
| Assertion | itgspliticc | ⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐶 ) 𝐷 d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝐷 d 𝑥 + ∫ ( 𝐵 [,] 𝐶 ) 𝐷 d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgspliticc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | itgspliticc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | itgspliticc.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) | |
| 4 | itgspliticc.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) → 𝐷 ∈ 𝑉 ) | |
| 5 | itgspliticc.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐷 ) ∈ 𝐿1 ) | |
| 6 | itgspliticc.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐷 ) ∈ 𝐿1 ) | |
| 7 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 8 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ) |
| 10 | 3 9 | mpbid | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) |
| 11 | 10 | simp1d | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 12 | 11 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 13 | 2 | rexrd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 14 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 15 | xrmaxle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) ≤ 𝑧 ↔ ( 𝐴 ≤ 𝑧 ∧ 𝐵 ≤ 𝑧 ) ) ) | |
| 16 | xrlemin | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑧 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ↔ ( 𝑧 ≤ 𝐵 ∧ 𝑧 ≤ 𝐶 ) ) ) | |
| 17 | 14 15 16 | ixxin | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) → ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) = ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) [,] if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) ) |
| 18 | 7 12 12 13 17 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) = ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) [,] if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) ) |
| 19 | 10 | simp2d | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 20 | 19 | iftrued | ⊢ ( 𝜑 → if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) = 𝐵 ) |
| 21 | 10 | simp3d | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) |
| 22 | 21 | iftrued | ⊢ ( 𝜑 → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) = 𝐵 ) |
| 23 | 20 22 | oveq12d | ⊢ ( 𝜑 → ( if ( 𝐴 ≤ 𝐵 , 𝐵 , 𝐴 ) [,] if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) = ( 𝐵 [,] 𝐵 ) ) |
| 24 | iccid | ⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) | |
| 25 | 12 24 | syl | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐵 ) = { 𝐵 } ) |
| 26 | 18 23 25 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) = { 𝐵 } ) |
| 27 | 26 | fveq2d | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) ) = ( vol* ‘ { 𝐵 } ) ) |
| 28 | ovolsn | ⊢ ( 𝐵 ∈ ℝ → ( vol* ‘ { 𝐵 } ) = 0 ) | |
| 29 | 11 28 | syl | ⊢ ( 𝜑 → ( vol* ‘ { 𝐵 } ) = 0 ) |
| 30 | 27 29 | eqtrd | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) ) = 0 ) |
| 31 | iccsplit | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) | |
| 32 | 1 2 3 31 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) |
| 33 | 30 32 4 5 6 | itgsplit | ⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐶 ) 𝐷 d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) 𝐷 d 𝑥 + ∫ ( 𝐵 [,] 𝐶 ) 𝐷 d 𝑥 ) ) |