This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function is integrable, then the S.2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblitg.1 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) | |
| iblitg.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝐾 ) ) ) ) | ||
| iblitg.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| iblitg.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| Assertion | iblitg | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblitg.1 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) | |
| 2 | iblitg.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝐾 ) ) ) ) | |
| 3 | iblitg.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 4 | iblitg.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) ) |
| 6 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝐾 ) ) ) ) |
| 7 | iexpcyc | ⊢ ( 𝐾 ∈ ℤ → ( i ↑ ( 𝐾 mod 4 ) ) = ( i ↑ 𝐾 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐾 ∈ ℤ → ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) = ( 𝐵 / ( i ↑ 𝐾 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐾 ∈ ℤ → ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝐾 ) ) ) ) |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝐾 ) ) ) ) |
| 11 | 6 10 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑇 = ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) |
| 12 | 11 | ibllem | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) |
| 13 | 12 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇 ) , 𝑇 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) ) |
| 14 | 5 13 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → ( ∫2 ‘ 𝐺 ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( i ↑ 𝑘 ) = ( i ↑ ( 𝐾 mod 4 ) ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( 𝐵 / ( i ↑ 𝑘 ) ) = ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) |
| 19 | 18 | breq2d | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) ) ) |
| 21 | 20 18 | ifbieq1d | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) |
| 22 | 21 | mpteq2dv | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) ) |
| 23 | 22 | fveq2d | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) ) ) |
| 24 | 23 | eleq1d | ⊢ ( 𝑘 = ( 𝐾 mod 4 ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ↔ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 25 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) | |
| 27 | 25 26 4 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 28 | 3 27 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) |
| 29 | 28 | simprd | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 31 | 4nn | ⊢ 4 ∈ ℕ | |
| 32 | zmodfz | ⊢ ( ( 𝐾 ∈ ℤ ∧ 4 ∈ ℕ ) → ( 𝐾 mod 4 ) ∈ ( 0 ... ( 4 − 1 ) ) ) | |
| 33 | 31 32 | mpan2 | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 mod 4 ) ∈ ( 0 ... ( 4 − 1 ) ) ) |
| 34 | 4m1e3 | ⊢ ( 4 − 1 ) = 3 | |
| 35 | 34 | oveq2i | ⊢ ( 0 ... ( 4 − 1 ) ) = ( 0 ... 3 ) |
| 36 | 33 35 | eleqtrdi | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 mod 4 ) ∈ ( 0 ... 3 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → ( 𝐾 mod 4 ) ∈ ( 0 ... 3 ) ) |
| 38 | 24 30 37 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ ( 𝐾 mod 4 ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 39 | 15 38 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℤ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |