This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1f1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) | |
| Assertion | itg11 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) | |
| 2 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 3 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 4 | mblvol | ⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 6 | itg10 | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 7 | 2 5 6 | 3eqtr4ri | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = ( vol ‘ ∅ ) |
| 8 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 9 | eleq2 | ⊢ ( 𝐴 = ∅ → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅ ) ) | |
| 10 | 8 9 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴 ) |
| 11 | 10 | iffalsed | ⊢ ( 𝐴 = ∅ → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) = 0 ) |
| 12 | 11 | mpteq2dv | ⊢ ( 𝐴 = ∅ → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 13 | fconstmpt | ⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) | |
| 14 | 12 1 13 | 3eqtr4g | ⊢ ( 𝐴 = ∅ → 𝐹 = ( ℝ × { 0 } ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝐴 = ∅ → ( ∫1 ‘ 𝐹 ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) ) |
| 16 | fveq2 | ⊢ ( 𝐴 = ∅ → ( vol ‘ 𝐴 ) = ( vol ‘ ∅ ) ) | |
| 17 | 7 15 16 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) |
| 18 | 17 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 = ∅ → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) ) |
| 19 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) | |
| 20 | 1 | i1f1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐹 ∈ dom ∫1 ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 ∈ dom ∫1 ) |
| 22 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑧 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑧 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) ) |
| 24 | 1 | i1f1lem | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) ) |
| 25 | 24 | simpli | ⊢ 𝐹 : ℝ ⟶ { 0 , 1 } |
| 26 | frn | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } → ran 𝐹 ⊆ { 0 , 1 } ) | |
| 27 | 25 26 | ax-mp | ⊢ ran 𝐹 ⊆ { 0 , 1 } |
| 28 | ssdif | ⊢ ( ran 𝐹 ⊆ { 0 , 1 } → ( ran 𝐹 ∖ { 0 } ) ⊆ ( { 0 , 1 } ∖ { 0 } ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ( { 0 , 1 } ∖ { 0 } ) |
| 30 | difprsnss | ⊢ ( { 0 , 1 } ∖ { 0 } ) ⊆ { 1 } | |
| 31 | 29 30 | sstri | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ { 1 } |
| 32 | 31 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ran 𝐹 ∖ { 0 } ) ⊆ { 1 } ) |
| 33 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
| 35 | 34 | sselda | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 36 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 37 | 36 | ifbid | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) = if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ) |
| 38 | 1ex | ⊢ 1 ∈ V | |
| 39 | c0ex | ⊢ 0 ∈ V | |
| 40 | 38 39 | ifex | ⊢ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ∈ V |
| 41 | 37 1 40 | fvmpt | ⊢ ( 𝑦 ∈ ℝ → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ) |
| 42 | 35 41 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ) |
| 43 | iftrue | ⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) | |
| 44 | 43 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) |
| 45 | 42 44 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = 1 ) |
| 46 | ffn | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } → 𝐹 Fn ℝ ) | |
| 47 | 25 46 | ax-mp | ⊢ 𝐹 Fn ℝ |
| 48 | fnfvelrn | ⊢ ( ( 𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) | |
| 49 | 47 35 48 | sylancr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 50 | 45 49 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 1 ∈ ran 𝐹 ) |
| 51 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 52 | eldifsn | ⊢ ( 1 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( 1 ∈ ran 𝐹 ∧ 1 ≠ 0 ) ) | |
| 53 | 50 51 52 | sylanblrc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 1 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 54 | 53 | snssd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → { 1 } ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
| 55 | 32 54 | eqssd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ran 𝐹 ∖ { 0 } ) = { 1 } ) |
| 56 | 55 | sumeq1d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → Σ 𝑧 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) = Σ 𝑧 ∈ { 1 } ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) ) |
| 57 | 1re | ⊢ 1 ∈ ℝ | |
| 58 | 24 | simpri | ⊢ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) |
| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) |
| 60 | 59 | fveq2d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) = ( vol ‘ 𝐴 ) ) |
| 61 | 60 | oveq2d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 1 · ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) = ( 1 · ( vol ‘ 𝐴 ) ) ) |
| 62 | simplr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( vol ‘ 𝐴 ) ∈ ℝ ) | |
| 63 | 62 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( vol ‘ 𝐴 ) ∈ ℂ ) |
| 64 | 63 | mullidd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 1 · ( vol ‘ 𝐴 ) ) = ( vol ‘ 𝐴 ) ) |
| 65 | 61 64 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 1 · ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) = ( vol ‘ 𝐴 ) ) |
| 66 | 65 63 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 1 · ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) ∈ ℂ ) |
| 67 | id | ⊢ ( 𝑧 = 1 → 𝑧 = 1 ) | |
| 68 | sneq | ⊢ ( 𝑧 = 1 → { 𝑧 } = { 1 } ) | |
| 69 | 68 | imaeq2d | ⊢ ( 𝑧 = 1 → ( ◡ 𝐹 “ { 𝑧 } ) = ( ◡ 𝐹 “ { 1 } ) ) |
| 70 | 69 | fveq2d | ⊢ ( 𝑧 = 1 → ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) = ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) |
| 71 | 67 70 | oveq12d | ⊢ ( 𝑧 = 1 → ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) = ( 1 · ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) ) |
| 72 | 71 | sumsn | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 · ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) ∈ ℂ ) → Σ 𝑧 ∈ { 1 } ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) = ( 1 · ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) ) |
| 73 | 57 66 72 | sylancr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → Σ 𝑧 ∈ { 1 } ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) = ( 1 · ( vol ‘ ( ◡ 𝐹 “ { 1 } ) ) ) ) |
| 74 | 73 65 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → Σ 𝑧 ∈ { 1 } ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) = ( vol ‘ 𝐴 ) ) |
| 75 | 56 74 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → Σ 𝑧 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑧 · ( vol ‘ ( ◡ 𝐹 “ { 𝑧 } ) ) ) = ( vol ‘ 𝐴 ) ) |
| 76 | 23 75 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) |
| 77 | 76 | ex | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝑦 ∈ 𝐴 → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) ) |
| 78 | 77 | exlimdv | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( ∃ 𝑦 𝑦 ∈ 𝐴 → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) ) |
| 79 | 19 78 | biimtrid | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( 𝐴 ≠ ∅ → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) ) |
| 80 | 18 79 | pm2.61dne | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( ∫1 ‘ 𝐹 ) = ( vol ‘ 𝐴 ) ) |