This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1f1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) | |
| Assertion | i1f1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐹 ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) | |
| 2 | 1 | i1f1lem | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) ) |
| 3 | 2 | simpli | ⊢ 𝐹 : ℝ ⟶ { 0 , 1 } |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | 1re | ⊢ 1 ∈ ℝ | |
| 6 | prssi | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → { 0 , 1 } ⊆ ℝ ) | |
| 7 | 4 5 6 | mp2an | ⊢ { 0 , 1 } ⊆ ℝ |
| 8 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ { 0 , 1 } ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) | |
| 9 | 3 7 8 | mp2an | ⊢ 𝐹 : ℝ ⟶ ℝ |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 11 | prfi | ⊢ { 0 , 1 } ∈ Fin | |
| 12 | 1ex | ⊢ 1 ∈ V | |
| 13 | 12 | prid2 | ⊢ 1 ∈ { 0 , 1 } |
| 14 | c0ex | ⊢ 0 ∈ V | |
| 15 | 14 | prid1 | ⊢ 0 ∈ { 0 , 1 } |
| 16 | 13 15 | ifcli | ⊢ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } |
| 17 | 16 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } ) |
| 18 | 17 1 | fmptd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐹 : ℝ ⟶ { 0 , 1 } ) |
| 19 | frn | ⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } → ran 𝐹 ⊆ { 0 , 1 } ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ran 𝐹 ⊆ { 0 , 1 } ) |
| 21 | ssfi | ⊢ ( ( { 0 , 1 } ∈ Fin ∧ ran 𝐹 ⊆ { 0 , 1 } ) → ran 𝐹 ∈ Fin ) | |
| 22 | 11 20 21 | sylancr | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ran 𝐹 ∈ Fin ) |
| 23 | 3 19 | ax-mp | ⊢ ran 𝐹 ⊆ { 0 , 1 } |
| 24 | df-pr | ⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) | |
| 25 | 24 | equncomi | ⊢ { 0 , 1 } = ( { 1 } ∪ { 0 } ) |
| 26 | 23 25 | sseqtri | ⊢ ran 𝐹 ⊆ ( { 1 } ∪ { 0 } ) |
| 27 | ssdif | ⊢ ( ran 𝐹 ⊆ ( { 1 } ∪ { 0 } ) → ( ran 𝐹 ∖ { 0 } ) ⊆ ( ( { 1 } ∪ { 0 } ) ∖ { 0 } ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ( ( { 1 } ∪ { 0 } ) ∖ { 0 } ) |
| 29 | difun2 | ⊢ ( ( { 1 } ∪ { 0 } ) ∖ { 0 } ) = ( { 1 } ∖ { 0 } ) | |
| 30 | difss | ⊢ ( { 1 } ∖ { 0 } ) ⊆ { 1 } | |
| 31 | 29 30 | eqsstri | ⊢ ( ( { 1 } ∪ { 0 } ) ∖ { 0 } ) ⊆ { 1 } |
| 32 | 28 31 | sstri | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ { 1 } |
| 33 | 32 | sseli | ⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑦 ∈ { 1 } ) |
| 34 | elsni | ⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) | |
| 35 | 33 34 | syl | ⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑦 = 1 ) |
| 36 | 35 | sneqd | ⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) → { 𝑦 } = { 1 } ) |
| 37 | 36 | imaeq2d | ⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) → ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ { 1 } ) ) |
| 38 | 2 | simpri | ⊢ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) |
| 39 | 38 | adantr | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) |
| 40 | 37 39 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) = 𝐴 ) |
| 41 | simpll | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐴 ∈ dom vol ) | |
| 42 | 40 41 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 43 | 40 | fveq2d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol ‘ 𝐴 ) ) |
| 44 | simplr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ 𝐴 ) ∈ ℝ ) | |
| 45 | 43 44 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 46 | 10 22 42 45 | i1fd | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐹 ∈ dom ∫1 ) |