This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0pledm.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 0pledm.2 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | ||
| Assertion | 0pledm | ⊢ ( 𝜑 → ( 0𝑝 ∘r ≤ 𝐹 ↔ ( 𝐴 × { 0 } ) ∘r ≤ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pledm.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 2 | 0pledm.2 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 3 | sseqin2 | ⊢ ( 𝐴 ⊆ ℂ ↔ ( ℂ ∩ 𝐴 ) = 𝐴 ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → ( ℂ ∩ 𝐴 ) = 𝐴 ) |
| 5 | 4 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( ℂ ∩ 𝐴 ) 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | fnconstg | ⊢ ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ℂ × { 0 } ) Fn ℂ |
| 9 | df-0p | ⊢ 0𝑝 = ( ℂ × { 0 } ) | |
| 10 | 9 | fneq1i | ⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
| 11 | 8 10 | mpbir | ⊢ 0𝑝 Fn ℂ |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 0𝑝 Fn ℂ ) |
| 13 | cnex | ⊢ ℂ ∈ V | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ℂ ∈ V ) |
| 15 | ssexg | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ∈ V ) → 𝐴 ∈ V ) | |
| 16 | 1 13 15 | sylancl | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 17 | eqid | ⊢ ( ℂ ∩ 𝐴 ) = ( ℂ ∩ 𝐴 ) | |
| 18 | 0pval | ⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
| 20 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 21 | 12 2 14 16 17 19 20 | ofrfval | ⊢ ( 𝜑 → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ( ℂ ∩ 𝐴 ) 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 | fnconstg | ⊢ ( 0 ∈ ℂ → ( 𝐴 × { 0 } ) Fn 𝐴 ) | |
| 23 | 6 22 | ax-mp | ⊢ ( 𝐴 × { 0 } ) Fn 𝐴 |
| 24 | 23 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
| 25 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 26 | c0ex | ⊢ 0 ∈ V | |
| 27 | 26 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 29 | 24 2 16 16 25 28 20 | ofrfval | ⊢ ( 𝜑 → ( ( 𝐴 × { 0 } ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐴 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 | 5 21 29 | 3bitr4d | ⊢ ( 𝜑 → ( 0𝑝 ∘r ≤ 𝐹 ↔ ( 𝐴 × { 0 } ) ∘r ≤ 𝐹 ) ) |