This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a constant C added to each term of a sequence. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climaddc1.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| climaddc1.6 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| climaddc1.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climaddc2.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 + ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | climaddc2 | ⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐶 + 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climaddc1.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 5 | climaddc1.6 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 6 | climaddc1.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 7 | climaddc2.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 + ( 𝐹 ‘ 𝑘 ) ) ) | |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
| 9 | 8 6 7 | comraddd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + 𝐶 ) ) |
| 10 | 1 2 3 4 5 6 9 | climaddc1 | ⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐴 + 𝐶 ) ) |
| 11 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 13 | 12 4 | addcomd | ⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐶 + 𝐴 ) ) |
| 14 | 10 13 | breqtrd | ⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐶 + 𝐴 ) ) |