This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumltss.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumltss.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumltss.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| isumltss.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | ||
| isumltss.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| isumltss.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ+ ) | ||
| isumltss.7 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumltss | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝑍 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumltss.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumltss.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumltss.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | isumltss.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | |
| 5 | isumltss.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 6 | isumltss.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ+ ) | |
| 7 | isumltss.7 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 8 | 1 | uzinf | ⊢ ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ¬ 𝑍 ∈ Fin ) |
| 10 | ssdif0 | ⊢ ( 𝑍 ⊆ 𝐴 ↔ ( 𝑍 ∖ 𝐴 ) = ∅ ) | |
| 11 | eqss | ⊢ ( 𝐴 = 𝑍 ↔ ( 𝐴 ⊆ 𝑍 ∧ 𝑍 ⊆ 𝐴 ) ) | |
| 12 | eleq1 | ⊢ ( 𝐴 = 𝑍 → ( 𝐴 ∈ Fin ↔ 𝑍 ∈ Fin ) ) | |
| 13 | 3 12 | syl5ibcom | ⊢ ( 𝜑 → ( 𝐴 = 𝑍 → 𝑍 ∈ Fin ) ) |
| 14 | 11 13 | biimtrrid | ⊢ ( 𝜑 → ( ( 𝐴 ⊆ 𝑍 ∧ 𝑍 ⊆ 𝐴 ) → 𝑍 ∈ Fin ) ) |
| 15 | 4 14 | mpand | ⊢ ( 𝜑 → ( 𝑍 ⊆ 𝐴 → 𝑍 ∈ Fin ) ) |
| 16 | 10 15 | biimtrrid | ⊢ ( 𝜑 → ( ( 𝑍 ∖ 𝐴 ) = ∅ → 𝑍 ∈ Fin ) ) |
| 17 | 9 16 | mtod | ⊢ ( 𝜑 → ¬ ( 𝑍 ∖ 𝐴 ) = ∅ ) |
| 18 | neq0 | ⊢ ( ¬ ( 𝑍 ∖ 𝐴 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) |
| 20 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → 𝐴 ∈ Fin ) |
| 21 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → 𝐴 ⊆ 𝑍 ) |
| 22 | 21 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑍 ) |
| 23 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ+ ) |
| 24 | 23 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 25 | 22 24 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 26 | 20 25 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 27 | snfi | ⊢ { 𝑥 } ∈ Fin | |
| 28 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑥 } ∈ Fin ) → ( 𝐴 ∪ { 𝑥 } ) ∈ Fin ) | |
| 29 | 20 27 28 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∪ { 𝑥 } ) ∈ Fin ) |
| 30 | eldifi | ⊢ ( 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) → 𝑥 ∈ 𝑍 ) | |
| 31 | 30 | snssd | ⊢ ( 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) → { 𝑥 } ⊆ 𝑍 ) |
| 32 | 4 31 | anim12i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ⊆ 𝑍 ∧ { 𝑥 } ⊆ 𝑍 ) ) |
| 33 | unss | ⊢ ( ( 𝐴 ⊆ 𝑍 ∧ { 𝑥 } ⊆ 𝑍 ) ↔ ( 𝐴 ∪ { 𝑥 } ) ⊆ 𝑍 ) | |
| 34 | 32 33 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∪ { 𝑥 } ) ⊆ 𝑍 ) |
| 35 | 34 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) ) → 𝑘 ∈ 𝑍 ) |
| 36 | 35 24 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) ) → 𝐵 ∈ ℝ ) |
| 37 | 29 36 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 ∈ ℝ ) |
| 38 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → 𝑀 ∈ ℤ ) |
| 39 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
| 40 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 41 | 1 38 39 24 40 | isumrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 42 | 27 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → { 𝑥 } ∈ Fin ) |
| 43 | vex | ⊢ 𝑥 ∈ V | |
| 44 | 43 | snnz | ⊢ { 𝑥 } ≠ ∅ |
| 45 | 44 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → { 𝑥 } ≠ ∅ ) |
| 46 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → { 𝑥 } ⊆ 𝑍 ) |
| 47 | 46 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ { 𝑥 } ) → 𝑘 ∈ 𝑍 ) |
| 48 | 47 23 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ { 𝑥 } ) → 𝐵 ∈ ℝ+ ) |
| 49 | 42 45 48 | fsumrpcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ { 𝑥 } 𝐵 ∈ ℝ+ ) |
| 50 | 26 49 | ltaddrpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 < ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ { 𝑥 } 𝐵 ) ) |
| 51 | eldifn | ⊢ ( 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 52 | 51 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 53 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ 𝐴 ) | |
| 54 | 52 53 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∩ { 𝑥 } ) = ∅ ) |
| 55 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) ) | |
| 56 | 23 | rpcnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 57 | 35 56 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) ) → 𝐵 ∈ ℂ ) |
| 58 | 54 55 29 57 | fsumsplit | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ { 𝑥 } 𝐵 ) ) |
| 59 | 50 58 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 ) |
| 60 | 23 | rpge0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐵 ) |
| 61 | 1 38 29 34 39 24 60 40 | isumless | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |
| 62 | 26 37 41 59 61 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝑍 𝐵 ) |
| 63 | 19 62 | exlimddv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝑍 𝐵 ) |