This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzinf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | uzinf | ⊢ ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzinf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ominf | ⊢ ¬ ω ∈ Fin | |
| 3 | 1 | uzenom | ⊢ ( 𝑀 ∈ ℤ → 𝑍 ≈ ω ) |
| 4 | enfi | ⊢ ( 𝑍 ≈ ω → ( 𝑍 ∈ Fin ↔ ω ∈ Fin ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑍 ∈ Fin ↔ ω ∈ Fin ) ) |
| 6 | 2 5 | mtbiri | ⊢ ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin ) |