This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumltss.1 | |- Z = ( ZZ>= ` M ) |
|
| isumltss.2 | |- ( ph -> M e. ZZ ) |
||
| isumltss.3 | |- ( ph -> A e. Fin ) |
||
| isumltss.4 | |- ( ph -> A C_ Z ) |
||
| isumltss.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
| isumltss.6 | |- ( ( ph /\ k e. Z ) -> B e. RR+ ) |
||
| isumltss.7 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | isumltss | |- ( ph -> sum_ k e. A B < sum_ k e. Z B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumltss.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumltss.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumltss.3 | |- ( ph -> A e. Fin ) |
|
| 4 | isumltss.4 | |- ( ph -> A C_ Z ) |
|
| 5 | isumltss.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
| 6 | isumltss.6 | |- ( ( ph /\ k e. Z ) -> B e. RR+ ) |
|
| 7 | isumltss.7 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 8 | 1 | uzinf | |- ( M e. ZZ -> -. Z e. Fin ) |
| 9 | 2 8 | syl | |- ( ph -> -. Z e. Fin ) |
| 10 | ssdif0 | |- ( Z C_ A <-> ( Z \ A ) = (/) ) |
|
| 11 | eqss | |- ( A = Z <-> ( A C_ Z /\ Z C_ A ) ) |
|
| 12 | eleq1 | |- ( A = Z -> ( A e. Fin <-> Z e. Fin ) ) |
|
| 13 | 3 12 | syl5ibcom | |- ( ph -> ( A = Z -> Z e. Fin ) ) |
| 14 | 11 13 | biimtrrid | |- ( ph -> ( ( A C_ Z /\ Z C_ A ) -> Z e. Fin ) ) |
| 15 | 4 14 | mpand | |- ( ph -> ( Z C_ A -> Z e. Fin ) ) |
| 16 | 10 15 | biimtrrid | |- ( ph -> ( ( Z \ A ) = (/) -> Z e. Fin ) ) |
| 17 | 9 16 | mtod | |- ( ph -> -. ( Z \ A ) = (/) ) |
| 18 | neq0 | |- ( -. ( Z \ A ) = (/) <-> E. x x e. ( Z \ A ) ) |
|
| 19 | 17 18 | sylib | |- ( ph -> E. x x e. ( Z \ A ) ) |
| 20 | 3 | adantr | |- ( ( ph /\ x e. ( Z \ A ) ) -> A e. Fin ) |
| 21 | 4 | adantr | |- ( ( ph /\ x e. ( Z \ A ) ) -> A C_ Z ) |
| 22 | 21 | sselda | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. A ) -> k e. Z ) |
| 23 | 6 | adantlr | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> B e. RR+ ) |
| 24 | 23 | rpred | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> B e. RR ) |
| 25 | 22 24 | syldan | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. A ) -> B e. RR ) |
| 26 | 20 25 | fsumrecl | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B e. RR ) |
| 27 | snfi | |- { x } e. Fin |
|
| 28 | unfi | |- ( ( A e. Fin /\ { x } e. Fin ) -> ( A u. { x } ) e. Fin ) |
|
| 29 | 20 27 28 | sylancl | |- ( ( ph /\ x e. ( Z \ A ) ) -> ( A u. { x } ) e. Fin ) |
| 30 | eldifi | |- ( x e. ( Z \ A ) -> x e. Z ) |
|
| 31 | 30 | snssd | |- ( x e. ( Z \ A ) -> { x } C_ Z ) |
| 32 | 4 31 | anim12i | |- ( ( ph /\ x e. ( Z \ A ) ) -> ( A C_ Z /\ { x } C_ Z ) ) |
| 33 | unss | |- ( ( A C_ Z /\ { x } C_ Z ) <-> ( A u. { x } ) C_ Z ) |
|
| 34 | 32 33 | sylib | |- ( ( ph /\ x e. ( Z \ A ) ) -> ( A u. { x } ) C_ Z ) |
| 35 | 34 | sselda | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. ( A u. { x } ) ) -> k e. Z ) |
| 36 | 35 24 | syldan | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. ( A u. { x } ) ) -> B e. RR ) |
| 37 | 29 36 | fsumrecl | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. ( A u. { x } ) B e. RR ) |
| 38 | 2 | adantr | |- ( ( ph /\ x e. ( Z \ A ) ) -> M e. ZZ ) |
| 39 | 5 | adantlr | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> ( F ` k ) = B ) |
| 40 | 7 | adantr | |- ( ( ph /\ x e. ( Z \ A ) ) -> seq M ( + , F ) e. dom ~~> ) |
| 41 | 1 38 39 24 40 | isumrecl | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. Z B e. RR ) |
| 42 | 27 | a1i | |- ( ( ph /\ x e. ( Z \ A ) ) -> { x } e. Fin ) |
| 43 | vex | |- x e. _V |
|
| 44 | 43 | snnz | |- { x } =/= (/) |
| 45 | 44 | a1i | |- ( ( ph /\ x e. ( Z \ A ) ) -> { x } =/= (/) ) |
| 46 | 31 | adantl | |- ( ( ph /\ x e. ( Z \ A ) ) -> { x } C_ Z ) |
| 47 | 46 | sselda | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. { x } ) -> k e. Z ) |
| 48 | 47 23 | syldan | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. { x } ) -> B e. RR+ ) |
| 49 | 42 45 48 | fsumrpcl | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. { x } B e. RR+ ) |
| 50 | 26 49 | ltaddrpd | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B < ( sum_ k e. A B + sum_ k e. { x } B ) ) |
| 51 | eldifn | |- ( x e. ( Z \ A ) -> -. x e. A ) |
|
| 52 | 51 | adantl | |- ( ( ph /\ x e. ( Z \ A ) ) -> -. x e. A ) |
| 53 | disjsn | |- ( ( A i^i { x } ) = (/) <-> -. x e. A ) |
|
| 54 | 52 53 | sylibr | |- ( ( ph /\ x e. ( Z \ A ) ) -> ( A i^i { x } ) = (/) ) |
| 55 | eqidd | |- ( ( ph /\ x e. ( Z \ A ) ) -> ( A u. { x } ) = ( A u. { x } ) ) |
|
| 56 | 23 | rpcnd | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> B e. CC ) |
| 57 | 35 56 | syldan | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. ( A u. { x } ) ) -> B e. CC ) |
| 58 | 54 55 29 57 | fsumsplit | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. ( A u. { x } ) B = ( sum_ k e. A B + sum_ k e. { x } B ) ) |
| 59 | 50 58 | breqtrrd | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B < sum_ k e. ( A u. { x } ) B ) |
| 60 | 23 | rpge0d | |- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> 0 <_ B ) |
| 61 | 1 38 29 34 39 24 60 40 | isumless | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. ( A u. { x } ) B <_ sum_ k e. Z B ) |
| 62 | 26 37 41 59 61 | ltletrd | |- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B < sum_ k e. Z B ) |
| 63 | 19 62 | exlimddv | |- ( ph -> sum_ k e. A B < sum_ k e. Z B ) |