This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-equation proof of linearity of a left module homomorphism, similar to df-lss . (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmhm2.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| islmhm2.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| islmhm2.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | ||
| islmhm2.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | ||
| islmhm2.e | ⊢ 𝐸 = ( Base ‘ 𝐾 ) | ||
| islmhm2.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| islmhm2.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| islmhm2.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| islmhm2.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | ||
| Assertion | islmhm2 | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhm2.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | islmhm2.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | islmhm2.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| 4 | islmhm2.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | |
| 5 | islmhm2.e | ⊢ 𝐸 = ( Base ‘ 𝐾 ) | |
| 6 | islmhm2.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 7 | islmhm2.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 8 | islmhm2.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 9 | islmhm2.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | |
| 10 | 1 2 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 11 | 3 4 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐿 = 𝐾 ) |
| 12 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 14 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑆 ∈ LMod ) |
| 16 | simpr1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐸 ) | |
| 17 | simpr2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 18 | 1 3 8 5 | lmodvscl | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 20 | simpr3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 21 | 1 6 7 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑥 · 𝑦 ) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 22 | 13 19 20 21 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 23 | 3 5 1 8 9 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 24 | 23 | 3adant3r3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 24 | oveq1d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 26 | 22 25 | eqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 | 26 | ralrimivvva | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 28 | 10 11 27 | 3jca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 30 | lmodgrp | ⊢ ( 𝑆 ∈ LMod → 𝑆 ∈ Grp ) | |
| 31 | lmodgrp | ⊢ ( 𝑇 ∈ LMod → 𝑇 ∈ Grp ) | |
| 32 | 30 31 | anim12i | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ) |
| 34 | simpr1 | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 35 | 3 | lmodring | ⊢ ( 𝑆 ∈ LMod → 𝐾 ∈ Ring ) |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → 𝐾 ∈ Ring ) |
| 37 | eqid | ⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) | |
| 38 | 5 37 | ringidcl | ⊢ ( 𝐾 ∈ Ring → ( 1r ‘ 𝐾 ) ∈ 𝐸 ) |
| 39 | oveq1 | ⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( 𝑥 · 𝑦 ) = ( ( 1r ‘ 𝐾 ) · 𝑦 ) ) | |
| 40 | 39 | fvoveq1d | ⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) ) |
| 41 | oveq1 | ⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) = ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ) | |
| 42 | 41 | oveq1d | ⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 43 | 40 42 | eqeq12d | ⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 44 | 43 | 2ralbidv | ⊢ ( 𝑥 = ( 1r ‘ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 45 | 44 | rspcv | ⊢ ( ( 1r ‘ 𝐾 ) ∈ 𝐸 → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 46 | 36 38 45 | 3syl | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 47 | simplll | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑆 ∈ LMod ) | |
| 48 | simprl | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 49 | 1 3 8 37 | lmodvs1 | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑦 ∈ 𝐵 ) → ( ( 1r ‘ 𝐾 ) · 𝑦 ) = 𝑦 ) |
| 50 | 47 48 49 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐾 ) · 𝑦 ) = 𝑦 ) |
| 51 | 50 | fvoveq1d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 52 | simplrr | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐿 = 𝐾 ) | |
| 53 | 52 | fveq2d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐾 ) ) |
| 54 | 53 | oveq1d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐿 ) × ( 𝐹 ‘ 𝑦 ) ) = ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ) |
| 55 | simpllr | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑇 ∈ LMod ) | |
| 56 | simplrl | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 57 | 56 48 | ffvelcdmd | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 58 | eqid | ⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) | |
| 59 | 2 4 9 58 | lmodvs1 | ⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) → ( ( 1r ‘ 𝐿 ) × ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 60 | 55 57 59 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐿 ) × ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 61 | 54 60 | eqtr3d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 62 | 61 | oveq1d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 63 | 51 62 | eqeq12d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 64 | 63 | 2ralbidva | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 ) · 𝑦 ) + 𝑧 ) ) = ( ( ( 1r ‘ 𝐾 ) × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 65 | 46 64 | sylibd | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ) ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 66 | 65 | exp32 | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 : 𝐵 ⟶ 𝐶 → ( 𝐿 = 𝐾 → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) ) ) |
| 67 | 66 | 3imp2 | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) |
| 68 | 34 67 | jca | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 69 | 1 2 6 7 | isghm | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 70 | 33 68 69 | sylanbrc | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 71 | simpr2 | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐿 = 𝐾 ) | |
| 72 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 73 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 74 | 72 73 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 75 | 70 74 | syl | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 76 | 30 | ad3antrrr | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Grp ) |
| 77 | 1 72 | grpidcl | ⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
| 78 | oveq2 | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝑥 · 𝑦 ) + 𝑧 ) = ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) | |
| 79 | 78 | fveq2d | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) ) |
| 80 | fveq2 | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) | |
| 81 | 80 | oveq2d | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 82 | 79 81 | eqeq12d | ⊢ ( 𝑧 = ( 0g ‘ 𝑆 ) → ( ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 83 | 82 | rspcv | ⊢ ( ( 0g ‘ 𝑆 ) ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 84 | 76 77 83 | 3syl | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 85 | simplll | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ LMod ) | |
| 86 | simprl | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐸 ) | |
| 87 | simprr | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 88 | 85 86 87 18 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 89 | 1 6 72 | grprid | ⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑥 · 𝑦 ) ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) = ( 𝑥 · 𝑦 ) ) |
| 90 | 76 88 89 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) = ( 𝑥 · 𝑦 ) ) |
| 91 | 90 | fveq2d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 92 | simplr3 | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) | |
| 93 | 92 | oveq2d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 0g ‘ 𝑇 ) ) ) |
| 94 | simpllr | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑇 ∈ LMod ) | |
| 95 | 94 31 | syl | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑇 ∈ Grp ) |
| 96 | simplr2 | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐿 = 𝐾 ) | |
| 97 | 96 | fveq2d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( Base ‘ 𝐿 ) = ( Base ‘ 𝐾 ) ) |
| 98 | 97 5 | eqtr4di | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( Base ‘ 𝐿 ) = 𝐸 ) |
| 99 | 86 98 | eleqtrrd | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( Base ‘ 𝐿 ) ) |
| 100 | simplr1 | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 101 | 100 87 | ffvelcdmd | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 102 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 103 | 2 4 9 102 | lmodvscl | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) → ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐶 ) |
| 104 | 94 99 101 103 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐶 ) |
| 105 | 2 7 73 | grprid | ⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ∈ 𝐶 ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 0g ‘ 𝑇 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 106 | 95 104 105 | syl2anc | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 0g ‘ 𝑇 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 107 | 93 106 | eqtrd | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 108 | 91 107 | eqeq12d | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 0g ‘ 𝑆 ) ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ↔ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 109 | 84 108 | sylibd | ⊢ ( ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 110 | 109 | ralimdvva | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 111 | 110 | 3exp2 | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 : 𝐵 ⟶ 𝐶 → ( 𝐿 = 𝐾 → ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 112 | 111 | com45 | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 : 𝐵 ⟶ 𝐶 → ( 𝐿 = 𝐾 → ( ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) |
| 113 | 112 | 3imp2 | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 114 | 75 113 | mpd | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 115 | 3 4 5 1 8 9 | islmhm3 | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 116 | 115 | adantr | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 117 | 70 71 114 116 | mpbir3and | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 118 | 29 117 | impbida | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ⨣ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |