This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isphl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| isphl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| isphl.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| isphl.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| isphl.i | ⊢ ∗ = ( *𝑟 ‘ 𝐹 ) | ||
| isphl.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | ||
| Assertion | isphl | ⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | isphl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | isphl.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 4 | isphl.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | isphl.i | ⊢ ∗ = ( *𝑟 ‘ 𝐹 ) | |
| 6 | isphl.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | |
| 7 | fvexd | ⊢ ( 𝑔 = 𝑊 → ( Base ‘ 𝑔 ) ∈ V ) | |
| 8 | fvexd | ⊢ ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) → ( ·𝑖 ‘ 𝑔 ) ∈ V ) | |
| 9 | fvexd | ⊢ ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) → ( Scalar ‘ 𝑔 ) ∈ V ) | |
| 10 | id | ⊢ ( 𝑓 = ( Scalar ‘ 𝑔 ) → 𝑓 = ( Scalar ‘ 𝑔 ) ) | |
| 11 | simpll | ⊢ ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) → 𝑔 = 𝑊 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) → ( Scalar ‘ 𝑔 ) = ( Scalar ‘ 𝑊 ) ) |
| 13 | 12 2 | eqtr4di | ⊢ ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) → ( Scalar ‘ 𝑔 ) = 𝐹 ) |
| 14 | 10 13 | sylan9eqr | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → 𝑓 = 𝐹 ) |
| 15 | 14 | eleq1d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 𝑓 ∈ *-Ring ↔ 𝐹 ∈ *-Ring ) ) |
| 16 | simpllr | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → 𝑣 = ( Base ‘ 𝑔 ) ) | |
| 17 | simplll | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → 𝑔 = 𝑊 ) | |
| 18 | 17 | fveq2d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( Base ‘ 𝑔 ) = ( Base ‘ 𝑊 ) ) |
| 19 | 18 1 | eqtr4di | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( Base ‘ 𝑔 ) = 𝑉 ) |
| 20 | 16 19 | eqtrd | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → 𝑣 = 𝑉 ) |
| 21 | simplr | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ℎ = ( ·𝑖 ‘ 𝑔 ) ) | |
| 22 | 17 | fveq2d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ·𝑖 ‘ 𝑔 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 23 | 22 3 | eqtr4di | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ·𝑖 ‘ 𝑔 ) = , ) |
| 24 | 21 23 | eqtrd | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ℎ = , ) |
| 25 | 24 | oveqd | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 , 𝑥 ) ) |
| 26 | 20 25 | mpteq12dv | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) = ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ) |
| 27 | 14 | fveq2d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ringLMod ‘ 𝑓 ) = ( ringLMod ‘ 𝐹 ) ) |
| 28 | 17 27 | oveq12d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) = ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 29 | 26 28 | eleq12d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ↔ ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) ) |
| 30 | 24 | oveqd | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 𝑥 ℎ 𝑥 ) = ( 𝑥 , 𝑥 ) ) |
| 31 | 14 | fveq2d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 0g ‘ 𝑓 ) = ( 0g ‘ 𝐹 ) ) |
| 32 | 31 6 | eqtr4di | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 0g ‘ 𝑓 ) = 𝑍 ) |
| 33 | 30 32 | eqeq12d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) ↔ ( 𝑥 , 𝑥 ) = 𝑍 ) ) |
| 34 | 17 | fveq2d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝑊 ) ) |
| 35 | 34 4 | eqtr4di | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 0g ‘ 𝑔 ) = 0 ) |
| 36 | 35 | eqeq2d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 𝑥 = ( 0g ‘ 𝑔 ) ↔ 𝑥 = 0 ) ) |
| 37 | 33 36 | imbi12d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ↔ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ) ) |
| 38 | 14 | fveq2d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( *𝑟 ‘ 𝑓 ) = ( *𝑟 ‘ 𝐹 ) ) |
| 39 | 38 5 | eqtr4di | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( *𝑟 ‘ 𝑓 ) = ∗ ) |
| 40 | 24 | oveqd | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 , 𝑦 ) ) |
| 41 | 39 40 | fveq12d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( ∗ ‘ ( 𝑥 , 𝑦 ) ) ) |
| 42 | 41 25 | eqeq12d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ↔ ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) |
| 43 | 20 42 | raleqbidv | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) |
| 44 | 29 37 43 | 3anbi123d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) |
| 45 | 20 44 | raleqbidv | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) |
| 46 | 15 45 | anbi12d | ⊢ ( ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) ∧ 𝑓 = ( Scalar ‘ 𝑔 ) ) → ( ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) ↔ ( 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) ) |
| 47 | 9 46 | sbcied | ⊢ ( ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) ∧ ℎ = ( ·𝑖 ‘ 𝑔 ) ) → ( [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) ↔ ( 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) ) |
| 48 | 8 47 | sbcied | ⊢ ( ( 𝑔 = 𝑊 ∧ 𝑣 = ( Base ‘ 𝑔 ) ) → ( [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) ↔ ( 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) ) |
| 49 | 7 48 | sbcied | ⊢ ( 𝑔 = 𝑊 → ( [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) ↔ ( 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) ) |
| 50 | df-phl | ⊢ PreHil = { 𝑔 ∈ LVec ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( ·𝑖 ‘ 𝑔 ) / ℎ ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] ( 𝑓 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑣 ( ( 𝑦 ∈ 𝑣 ↦ ( 𝑦 ℎ 𝑥 ) ) ∈ ( 𝑔 LMHom ( ringLMod ‘ 𝑓 ) ) ∧ ( ( 𝑥 ℎ 𝑥 ) = ( 0g ‘ 𝑓 ) → 𝑥 = ( 0g ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ 𝑣 ( ( *𝑟 ‘ 𝑓 ) ‘ ( 𝑥 ℎ 𝑦 ) ) = ( 𝑦 ℎ 𝑥 ) ) ) } | |
| 51 | 49 50 | elrab2 | ⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ ( 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) ) |
| 52 | 3anass | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ↔ ( 𝑊 ∈ LVec ∧ ( 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) ) | |
| 53 | 51 52 | bitr4i | ⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) |