This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| phlpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| phlpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| phlpropd.4 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) | ||
| phlpropd.5 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | ||
| phlpropd.6 | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | ||
| phlpropd.7 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| phlpropd.8 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | phlpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | phlpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | phlpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | phlpropd.4 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) | |
| 5 | phlpropd.5 | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) | |
| 6 | phlpropd.6 | ⊢ 𝑃 = ( Base ‘ 𝐹 ) | |
| 7 | phlpropd.7 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 8 | phlpropd.8 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝐿 ) 𝑦 ) ) | |
| 9 | 1 2 3 4 5 6 7 | lvecpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ LVec ↔ 𝐿 ∈ LVec ) ) |
| 10 | 4 5 | eqtr3d | ⊢ ( 𝜑 → ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐿 ) ) |
| 11 | 10 | eleq1d | ⊢ ( 𝜑 → ( ( Scalar ‘ 𝐾 ) ∈ *-Ring ↔ ( Scalar ‘ 𝐿 ) ∈ *-Ring ) ) |
| 12 | 8 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 13 | 12 | anass1rs | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 14 | 13 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) = ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 15 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 16 | 15 | mpteq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) = ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) |
| 17 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 18 | 17 | mpteq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐵 ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) = ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 19 | 14 16 18 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) = ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 20 | rlmbas | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) | |
| 21 | 6 20 | eqtri | ⊢ 𝑃 = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) |
| 22 | 21 | a1i | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) ) |
| 23 | fvex | ⊢ ( Scalar ‘ 𝐾 ) ∈ V | |
| 24 | 4 23 | eqeltrdi | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 25 | rlmsca | ⊢ ( 𝐹 ∈ V → 𝐹 = ( Scalar ‘ ( ringLMod ‘ 𝐹 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ ( ringLMod ‘ 𝐹 ) ) ) |
| 27 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) ) | |
| 28 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) 𝑦 ) ) | |
| 29 | 1 22 2 22 4 26 5 26 6 6 3 27 7 28 | lmhmpropd | ⊢ ( 𝜑 → ( 𝐾 LMHom ( ringLMod ‘ 𝐹 ) ) = ( 𝐿 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 30 | 4 | fveq2d | ⊢ ( 𝜑 → ( ringLMod ‘ 𝐹 ) = ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( 𝐾 LMHom ( ringLMod ‘ 𝐹 ) ) = ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ) |
| 32 | 5 | fveq2d | ⊢ ( 𝜑 → ( ringLMod ‘ 𝐹 ) = ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( 𝜑 → ( 𝐿 LMHom ( ringLMod ‘ 𝐹 ) ) = ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 34 | 29 31 33 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) = ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) = ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 36 | 19 35 | eleq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ↔ ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ) ) |
| 37 | 8 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 38 | 37 | anabsan2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) |
| 39 | 10 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 41 | 38 40 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) ↔ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) ) ) |
| 42 | 1 2 3 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 44 | 43 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 = ( 0g ‘ 𝐾 ) ↔ 𝑎 = ( 0g ‘ 𝐿 ) ) ) |
| 45 | 41 44 | imbi12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ↔ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) ) |
| 46 | 10 | fveq2d | ⊢ ( 𝜑 → ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 48 | 8 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) = ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) |
| 49 | 47 48 | fveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) ) |
| 50 | 49 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) ) |
| 51 | 50 13 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 52 | 51 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 53 | 15 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) |
| 54 | 17 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 55 | 52 53 54 | 3bitr3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) |
| 56 | 36 45 55 | 3anbi123d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 57 | 56 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 58 | 1 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ) |
| 59 | 2 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 60 | 57 58 59 | 3bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 61 | 9 11 60 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ LVec ∧ ( Scalar ‘ 𝐾 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ↔ ( 𝐿 ∈ LVec ∧ ( Scalar ‘ 𝐿 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) ) |
| 62 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 63 | eqid | ⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) | |
| 64 | eqid | ⊢ ( ·𝑖 ‘ 𝐾 ) = ( ·𝑖 ‘ 𝐾 ) | |
| 65 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 66 | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) | |
| 67 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝐾 ) ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) | |
| 68 | 62 63 64 65 66 67 | isphl | ⊢ ( 𝐾 ∈ PreHil ↔ ( 𝐾 ∈ LVec ∧ ( Scalar ‘ 𝐾 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ( ( 𝑏 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ∈ ( 𝐾 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐾 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐾 ) ) → 𝑎 = ( 0g ‘ 𝐾 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐾 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐾 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐾 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐾 ) 𝑎 ) ) ) ) |
| 69 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 70 | eqid | ⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) | |
| 71 | eqid | ⊢ ( ·𝑖 ‘ 𝐿 ) = ( ·𝑖 ‘ 𝐿 ) | |
| 72 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 73 | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) | |
| 74 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝐿 ) ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) | |
| 75 | 69 70 71 72 73 74 | isphl | ⊢ ( 𝐿 ∈ PreHil ↔ ( 𝐿 ∈ LVec ∧ ( Scalar ‘ 𝐿 ) ∈ *-Ring ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐿 ) ( ( 𝑏 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ∈ ( 𝐿 LMHom ( ringLMod ‘ ( Scalar ‘ 𝐿 ) ) ) ∧ ( ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) = ( 0g ‘ ( Scalar ‘ 𝐿 ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ∧ ∀ 𝑏 ∈ ( Base ‘ 𝐿 ) ( ( *𝑟 ‘ ( Scalar ‘ 𝐿 ) ) ‘ ( 𝑎 ( ·𝑖 ‘ 𝐿 ) 𝑏 ) ) = ( 𝑏 ( ·𝑖 ‘ 𝐿 ) 𝑎 ) ) ) ) |
| 76 | 61 68 75 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil ) ) |