This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of linear subspaces of a left module or left vector space: a linear subspace of a left module or left vector space is a non-empty subset of the base set of the left module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lss | ⊢ LSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clss | ⊢ LSubSp | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 | c0 | ⊢ ∅ | |
| 9 | 8 | csn | ⊢ { ∅ } |
| 10 | 7 9 | cdif | ⊢ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) |
| 11 | vx | ⊢ 𝑥 | |
| 12 | csca | ⊢ Scalar | |
| 13 | 5 12 | cfv | ⊢ ( Scalar ‘ 𝑤 ) |
| 14 | 13 4 | cfv | ⊢ ( Base ‘ ( Scalar ‘ 𝑤 ) ) |
| 15 | va | ⊢ 𝑎 | |
| 16 | 3 | cv | ⊢ 𝑠 |
| 17 | vb | ⊢ 𝑏 | |
| 18 | 11 | cv | ⊢ 𝑥 |
| 19 | cvsca | ⊢ ·𝑠 | |
| 20 | 5 19 | cfv | ⊢ ( ·𝑠 ‘ 𝑤 ) |
| 21 | 15 | cv | ⊢ 𝑎 |
| 22 | 18 21 20 | co | ⊢ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) |
| 23 | cplusg | ⊢ +g | |
| 24 | 5 23 | cfv | ⊢ ( +g ‘ 𝑤 ) |
| 25 | 17 | cv | ⊢ 𝑏 |
| 26 | 22 25 24 | co | ⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) |
| 27 | 26 16 | wcel | ⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
| 28 | 27 17 16 | wral | ⊢ ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
| 29 | 28 15 16 | wral | ⊢ ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
| 30 | 29 11 14 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 |
| 31 | 30 3 10 | crab | ⊢ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } |
| 32 | 1 2 31 | cmpt | ⊢ ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } ) |
| 33 | 0 32 | wceq | ⊢ LSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( 𝒫 ( Base ‘ 𝑤 ) ∖ { ∅ } ) ∣ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) ∀ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ( ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑎 ) ( +g ‘ 𝑤 ) 𝑏 ) ∈ 𝑠 } ) |