This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | isf34lem6 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | elmapi | ⊢ ( 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝑓 : ω ⟶ 𝒫 𝐴 ) | |
| 3 | 1 | isf34lem7 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) ) → ∪ ran 𝑓 ∈ ran 𝑓 ) |
| 4 | 3 | 3expia | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝑓 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) |
| 5 | 2 4 | sylan2 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ) → ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) |
| 6 | 5 | ralrimiva | ⊢ ( 𝐴 ∈ FinIII → ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) |
| 7 | elmapex | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝒫 𝐴 ∈ V ∧ ω ∈ V ) ) | |
| 8 | 7 | simpld | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝒫 𝐴 ∈ V ) |
| 9 | pwexb | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝐴 ∈ V ) |
| 11 | 1 | isf34lem2 | ⊢ ( 𝐴 ∈ V → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 12 | 10 11 | syl | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 13 | elmapi | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝑔 : ω ⟶ 𝒫 𝐴 ) | |
| 14 | fco | ⊢ ( ( 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ∧ 𝑔 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) |
| 16 | elmapg | ⊢ ( ( 𝒫 𝐴 ∈ V ∧ ω ∈ V ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) ↔ ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) ) | |
| 17 | 7 16 | syl | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) ↔ ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) ) |
| 18 | 15 17 | mpbird | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) ) |
| 19 | fveq1 | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ) | |
| 20 | fveq1 | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( 𝑓 ‘ suc 𝑦 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) | |
| 21 | 19 20 | sseq12d | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) ↔ ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
| 22 | 21 | ralbidv | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) ↔ ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
| 23 | rneq | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ran 𝑓 = ran ( 𝐹 ∘ 𝑔 ) ) | |
| 24 | rnco2 | ⊢ ran ( 𝐹 ∘ 𝑔 ) = ( 𝐹 “ ran 𝑔 ) | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ran 𝑓 = ( 𝐹 “ ran 𝑔 ) ) |
| 26 | 25 | unieqd | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ∪ ran 𝑓 = ∪ ( 𝐹 “ ran 𝑔 ) ) |
| 27 | 26 25 | eleq12d | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ∪ ran 𝑓 ∈ ran 𝑓 ↔ ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) |
| 28 | 22 27 | imbi12d | ⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ↔ ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) ) |
| 29 | 28 | rspccv | ⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) ) |
| 30 | 18 29 | syl5 | ⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) ) |
| 31 | sscon | ⊢ ( ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) | |
| 32 | 13 | ffvelcdmda | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 33 | 32 | elpwid | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ 𝑦 ) ⊆ 𝐴 ) |
| 34 | 1 | isf34lem1 | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑔 ‘ 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ) |
| 35 | 10 33 34 | syl2an2r | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ) |
| 36 | peano2 | ⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) | |
| 37 | ffvelcdm | ⊢ ( ( 𝑔 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( 𝑔 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) | |
| 38 | 13 36 37 | syl2an | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
| 39 | 38 | elpwid | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ suc 𝑦 ) ⊆ 𝐴 ) |
| 40 | 1 | isf34lem1 | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑔 ‘ suc 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) |
| 41 | 10 39 40 | syl2an2r | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) |
| 42 | 35 41 | sseq12d | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ↔ ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) ) |
| 43 | 31 42 | imbitrrid | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) ) |
| 44 | fvco3 | ⊢ ( ( 𝑔 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ) | |
| 45 | 13 44 | sylan | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ) |
| 46 | fvco3 | ⊢ ( ( 𝑔 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) | |
| 47 | 13 36 46 | syl2an | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) |
| 48 | 45 47 | sseq12d | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) ) |
| 49 | 43 48 | sylibrd | ⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
| 50 | 49 | ralimdva | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
| 51 | 12 | ffnd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝐹 Fn 𝒫 𝐴 ) |
| 52 | imassrn | ⊢ ( 𝐹 “ ran 𝑔 ) ⊆ ran 𝐹 | |
| 53 | 12 | frnd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
| 54 | 52 53 | sstrid | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ) |
| 55 | fnfvima | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ∧ ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) | |
| 56 | 55 | 3expia | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ) → ( ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) ) |
| 57 | 51 54 56 | syl2anc | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) ) |
| 58 | incom | ⊢ ( dom 𝐹 ∩ ran 𝑔 ) = ( ran 𝑔 ∩ dom 𝐹 ) | |
| 59 | 13 | frnd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝑔 ⊆ 𝒫 𝐴 ) |
| 60 | 12 | fdmd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → dom 𝐹 = 𝒫 𝐴 ) |
| 61 | 59 60 | sseqtrrd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝑔 ⊆ dom 𝐹 ) |
| 62 | dfss2 | ⊢ ( ran 𝑔 ⊆ dom 𝐹 ↔ ( ran 𝑔 ∩ dom 𝐹 ) = ran 𝑔 ) | |
| 63 | 61 62 | sylib | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ran 𝑔 ∩ dom 𝐹 ) = ran 𝑔 ) |
| 64 | 58 63 | eqtrid | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( dom 𝐹 ∩ ran 𝑔 ) = ran 𝑔 ) |
| 65 | 13 | fdmd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → dom 𝑔 = ω ) |
| 66 | peano1 | ⊢ ∅ ∈ ω | |
| 67 | ne0i | ⊢ ( ∅ ∈ ω → ω ≠ ∅ ) | |
| 68 | 66 67 | mp1i | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ω ≠ ∅ ) |
| 69 | 65 68 | eqnetrd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → dom 𝑔 ≠ ∅ ) |
| 70 | dm0rn0 | ⊢ ( dom 𝑔 = ∅ ↔ ran 𝑔 = ∅ ) | |
| 71 | 70 | necon3bii | ⊢ ( dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅ ) |
| 72 | 69 71 | sylib | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝑔 ≠ ∅ ) |
| 73 | 64 72 | eqnetrd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( dom 𝐹 ∩ ran 𝑔 ) ≠ ∅ ) |
| 74 | imadisj | ⊢ ( ( 𝐹 “ ran 𝑔 ) = ∅ ↔ ( dom 𝐹 ∩ ran 𝑔 ) = ∅ ) | |
| 75 | 74 | necon3bii | ⊢ ( ( 𝐹 “ ran 𝑔 ) ≠ ∅ ↔ ( dom 𝐹 ∩ ran 𝑔 ) ≠ ∅ ) |
| 76 | 73 75 | sylibr | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 “ ran 𝑔 ) ≠ ∅ ) |
| 77 | 1 | isf34lem4 | ⊢ ( ( 𝐴 ∈ V ∧ ( ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝑔 ) ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) |
| 78 | 10 54 76 77 | syl12anc | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) |
| 79 | 1 | isf34lem3 | ⊢ ( ( 𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) = ran 𝑔 ) |
| 80 | 10 59 79 | syl2anc | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) = ran 𝑔 ) |
| 81 | 80 | inteqd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ∩ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) = ∩ ran 𝑔 ) |
| 82 | 78 81 | eqtrd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) = ∩ ran 𝑔 ) |
| 83 | 82 80 | eleq12d | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ↔ ∩ ran 𝑔 ∈ ran 𝑔 ) ) |
| 84 | 57 83 | sylibd | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) |
| 85 | 50 84 | imim12d | ⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) → ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) ) |
| 86 | 30 85 | sylcom | ⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) ) |
| 87 | 86 | ralrimiv | ⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ∀ 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) |
| 88 | isfin3-3 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ∀ 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) ) | |
| 89 | 87 88 | imbitrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → 𝐴 ∈ FinIII ) ) |
| 90 | 6 89 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) ) |