This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | isf34lem7 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∪ ran 𝐺 ∈ ran 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | 1 | isf34lem2 | ⊢ ( 𝐴 ∈ FinIII → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 5 | 4 | ffnd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 Fn 𝒫 𝐴 ) |
| 6 | imassrn | ⊢ ( 𝐹 “ ran 𝐺 ) ⊆ ran 𝐹 | |
| 7 | 3 | frnd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
| 9 | 6 8 | sstrid | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ) |
| 10 | simp1 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐴 ∈ FinIII ) | |
| 11 | fco | ⊢ ( ( 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) | |
| 12 | 2 11 | sylan | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
| 14 | sscon | ⊢ ( ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 15 | simpr | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐺 : ω ⟶ 𝒫 𝐴 ) | |
| 16 | peano2 | ⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) | |
| 17 | fvco3 | ⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 19 | simpll | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → 𝐴 ∈ FinIII ) | |
| 20 | ffvelcdm | ⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) | |
| 21 | 15 16 20 | syl2an | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
| 22 | 21 | elpwid | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 ) |
| 23 | 1 | isf34lem1 | ⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 24 | 19 22 23 | syl2anc | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 25 | 18 24 | eqtrd | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 26 | fvco3 | ⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 27 | 26 | adantll | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 28 | ffvelcdm | ⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) | |
| 29 | 28 | adantll | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 30 | 29 | elpwid | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ⊆ 𝐴 ) |
| 31 | 1 | isf34lem1 | ⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐺 ‘ 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
| 32 | 19 30 31 | syl2anc | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
| 33 | 27 32 | eqtrd | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
| 34 | 25 33 | sseq12d | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ↔ ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 35 | 14 34 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 36 | 35 | ralimdva | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 37 | 36 | 3impia | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) |
| 38 | fin33i | ⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) → ∩ ran ( 𝐹 ∘ 𝐺 ) ∈ ran ( 𝐹 ∘ 𝐺 ) ) | |
| 39 | 10 13 37 38 | syl3anc | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∩ ran ( 𝐹 ∘ 𝐺 ) ∈ ran ( 𝐹 ∘ 𝐺 ) ) |
| 40 | rnco2 | ⊢ ran ( 𝐹 ∘ 𝐺 ) = ( 𝐹 “ ran 𝐺 ) | |
| 41 | 40 | inteqi | ⊢ ∩ ran ( 𝐹 ∘ 𝐺 ) = ∩ ( 𝐹 “ ran 𝐺 ) |
| 42 | 39 41 40 | 3eltr3g | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∩ ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) ) |
| 43 | fnfvima | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ∧ ∩ ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) | |
| 44 | 5 9 42 43 | syl3anc | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
| 45 | simpl | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐴 ∈ FinIII ) | |
| 46 | 6 7 | sstrid | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ) |
| 47 | incom | ⊢ ( dom 𝐹 ∩ ran 𝐺 ) = ( ran 𝐺 ∩ dom 𝐹 ) | |
| 48 | frn | ⊢ ( 𝐺 : ω ⟶ 𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴 ) | |
| 49 | 48 | adantl | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ 𝒫 𝐴 ) |
| 50 | 3 | fdmd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐹 = 𝒫 𝐴 ) |
| 51 | 49 50 | sseqtrrd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ dom 𝐹 ) |
| 52 | dfss2 | ⊢ ( ran 𝐺 ⊆ dom 𝐹 ↔ ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 ) | |
| 53 | 51 52 | sylib | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 ) |
| 54 | 47 53 | eqtrid | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) = ran 𝐺 ) |
| 55 | fdm | ⊢ ( 𝐺 : ω ⟶ 𝒫 𝐴 → dom 𝐺 = ω ) | |
| 56 | 55 | adantl | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 = ω ) |
| 57 | peano1 | ⊢ ∅ ∈ ω | |
| 58 | ne0i | ⊢ ( ∅ ∈ ω → ω ≠ ∅ ) | |
| 59 | 57 58 | mp1i | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ω ≠ ∅ ) |
| 60 | 56 59 | eqnetrd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 ≠ ∅ ) |
| 61 | dm0rn0 | ⊢ ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ ) | |
| 62 | 61 | necon3bii | ⊢ ( dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅ ) |
| 63 | 60 62 | sylib | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ≠ ∅ ) |
| 64 | 54 63 | eqnetrd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ ) |
| 65 | imadisj | ⊢ ( ( 𝐹 “ ran 𝐺 ) = ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) = ∅ ) | |
| 66 | 65 | necon3bii | ⊢ ( ( 𝐹 “ ran 𝐺 ) ≠ ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ ) |
| 67 | 64 66 | sylibr | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ≠ ∅ ) |
| 68 | 1 | isf34lem5 | ⊢ ( ( 𝐴 ∈ FinIII ∧ ( ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ≠ ∅ ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
| 69 | 45 46 67 68 | syl12anc | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
| 70 | 1 | isf34lem3 | ⊢ ( ( 𝐴 ∈ FinIII ∧ ran 𝐺 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 ) |
| 71 | 45 49 70 | syl2anc | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 ) |
| 72 | 71 | unieqd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ∪ ran 𝐺 ) |
| 73 | 69 72 | eqtrd | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ran 𝐺 ) |
| 74 | 73 71 | eleq12d | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ∪ ran 𝐺 ∈ ran 𝐺 ) ) |
| 75 | 74 | 3adant3 | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ∪ ran 𝐺 ∈ ran 𝐺 ) ) |
| 76 | 44 75 | mpbid | ⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∪ ran 𝐺 ∈ ran 𝐺 ) |