This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | isf34lem3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | 1 | compsscnv | ⊢ ◡ 𝐹 = 𝐹 |
| 3 | 2 | imaeq1i | ⊢ ( ◡ 𝐹 “ ( 𝐹 “ 𝑋 ) ) = ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) |
| 4 | 1 | compssiso | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ) |
| 5 | isof1o | ⊢ ( 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) → 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ) | |
| 6 | f1of1 | ⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 → 𝐹 : 𝒫 𝐴 –1-1→ 𝒫 𝐴 ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 –1-1→ 𝒫 𝐴 ) |
| 8 | f1imacnv | ⊢ ( ( 𝐹 : 𝒫 𝐴 –1-1→ 𝒫 𝐴 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) |
| 10 | 3 9 | eqtr3id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) |