This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | isf34lem6 | |- ( A e. V -> ( A e. Fin3 <-> A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | elmapi | |- ( f e. ( ~P A ^m _om ) -> f : _om --> ~P A ) |
|
| 3 | 1 | isf34lem7 | |- ( ( A e. Fin3 /\ f : _om --> ~P A /\ A. y e. _om ( f ` y ) C_ ( f ` suc y ) ) -> U. ran f e. ran f ) |
| 4 | 3 | 3expia | |- ( ( A e. Fin3 /\ f : _om --> ~P A ) -> ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) ) |
| 5 | 2 4 | sylan2 | |- ( ( A e. Fin3 /\ f e. ( ~P A ^m _om ) ) -> ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) ) |
| 6 | 5 | ralrimiva | |- ( A e. Fin3 -> A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) ) |
| 7 | elmapex | |- ( g e. ( ~P A ^m _om ) -> ( ~P A e. _V /\ _om e. _V ) ) |
|
| 8 | 7 | simpld | |- ( g e. ( ~P A ^m _om ) -> ~P A e. _V ) |
| 9 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
| 10 | 8 9 | sylibr | |- ( g e. ( ~P A ^m _om ) -> A e. _V ) |
| 11 | 1 | isf34lem2 | |- ( A e. _V -> F : ~P A --> ~P A ) |
| 12 | 10 11 | syl | |- ( g e. ( ~P A ^m _om ) -> F : ~P A --> ~P A ) |
| 13 | elmapi | |- ( g e. ( ~P A ^m _om ) -> g : _om --> ~P A ) |
|
| 14 | fco | |- ( ( F : ~P A --> ~P A /\ g : _om --> ~P A ) -> ( F o. g ) : _om --> ~P A ) |
|
| 15 | 12 13 14 | syl2anc | |- ( g e. ( ~P A ^m _om ) -> ( F o. g ) : _om --> ~P A ) |
| 16 | elmapg | |- ( ( ~P A e. _V /\ _om e. _V ) -> ( ( F o. g ) e. ( ~P A ^m _om ) <-> ( F o. g ) : _om --> ~P A ) ) |
|
| 17 | 7 16 | syl | |- ( g e. ( ~P A ^m _om ) -> ( ( F o. g ) e. ( ~P A ^m _om ) <-> ( F o. g ) : _om --> ~P A ) ) |
| 18 | 15 17 | mpbird | |- ( g e. ( ~P A ^m _om ) -> ( F o. g ) e. ( ~P A ^m _om ) ) |
| 19 | fveq1 | |- ( f = ( F o. g ) -> ( f ` y ) = ( ( F o. g ) ` y ) ) |
|
| 20 | fveq1 | |- ( f = ( F o. g ) -> ( f ` suc y ) = ( ( F o. g ) ` suc y ) ) |
|
| 21 | 19 20 | sseq12d | |- ( f = ( F o. g ) -> ( ( f ` y ) C_ ( f ` suc y ) <-> ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) ) ) |
| 22 | 21 | ralbidv | |- ( f = ( F o. g ) -> ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) <-> A. y e. _om ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) ) ) |
| 23 | rneq | |- ( f = ( F o. g ) -> ran f = ran ( F o. g ) ) |
|
| 24 | rnco2 | |- ran ( F o. g ) = ( F " ran g ) |
|
| 25 | 23 24 | eqtrdi | |- ( f = ( F o. g ) -> ran f = ( F " ran g ) ) |
| 26 | 25 | unieqd | |- ( f = ( F o. g ) -> U. ran f = U. ( F " ran g ) ) |
| 27 | 26 25 | eleq12d | |- ( f = ( F o. g ) -> ( U. ran f e. ran f <-> U. ( F " ran g ) e. ( F " ran g ) ) ) |
| 28 | 22 27 | imbi12d | |- ( f = ( F o. g ) -> ( ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) <-> ( A. y e. _om ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) -> U. ( F " ran g ) e. ( F " ran g ) ) ) ) |
| 29 | 28 | rspccv | |- ( A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) -> ( ( F o. g ) e. ( ~P A ^m _om ) -> ( A. y e. _om ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) -> U. ( F " ran g ) e. ( F " ran g ) ) ) ) |
| 30 | 18 29 | syl5 | |- ( A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) -> ( g e. ( ~P A ^m _om ) -> ( A. y e. _om ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) -> U. ( F " ran g ) e. ( F " ran g ) ) ) ) |
| 31 | sscon | |- ( ( g ` suc y ) C_ ( g ` y ) -> ( A \ ( g ` y ) ) C_ ( A \ ( g ` suc y ) ) ) |
|
| 32 | 13 | ffvelcdmda | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( g ` y ) e. ~P A ) |
| 33 | 32 | elpwid | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( g ` y ) C_ A ) |
| 34 | 1 | isf34lem1 | |- ( ( A e. _V /\ ( g ` y ) C_ A ) -> ( F ` ( g ` y ) ) = ( A \ ( g ` y ) ) ) |
| 35 | 10 33 34 | syl2an2r | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( F ` ( g ` y ) ) = ( A \ ( g ` y ) ) ) |
| 36 | peano2 | |- ( y e. _om -> suc y e. _om ) |
|
| 37 | ffvelcdm | |- ( ( g : _om --> ~P A /\ suc y e. _om ) -> ( g ` suc y ) e. ~P A ) |
|
| 38 | 13 36 37 | syl2an | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( g ` suc y ) e. ~P A ) |
| 39 | 38 | elpwid | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( g ` suc y ) C_ A ) |
| 40 | 1 | isf34lem1 | |- ( ( A e. _V /\ ( g ` suc y ) C_ A ) -> ( F ` ( g ` suc y ) ) = ( A \ ( g ` suc y ) ) ) |
| 41 | 10 39 40 | syl2an2r | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( F ` ( g ` suc y ) ) = ( A \ ( g ` suc y ) ) ) |
| 42 | 35 41 | sseq12d | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( ( F ` ( g ` y ) ) C_ ( F ` ( g ` suc y ) ) <-> ( A \ ( g ` y ) ) C_ ( A \ ( g ` suc y ) ) ) ) |
| 43 | 31 42 | imbitrrid | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( ( g ` suc y ) C_ ( g ` y ) -> ( F ` ( g ` y ) ) C_ ( F ` ( g ` suc y ) ) ) ) |
| 44 | fvco3 | |- ( ( g : _om --> ~P A /\ y e. _om ) -> ( ( F o. g ) ` y ) = ( F ` ( g ` y ) ) ) |
|
| 45 | 13 44 | sylan | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( ( F o. g ) ` y ) = ( F ` ( g ` y ) ) ) |
| 46 | fvco3 | |- ( ( g : _om --> ~P A /\ suc y e. _om ) -> ( ( F o. g ) ` suc y ) = ( F ` ( g ` suc y ) ) ) |
|
| 47 | 13 36 46 | syl2an | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( ( F o. g ) ` suc y ) = ( F ` ( g ` suc y ) ) ) |
| 48 | 45 47 | sseq12d | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) <-> ( F ` ( g ` y ) ) C_ ( F ` ( g ` suc y ) ) ) ) |
| 49 | 43 48 | sylibrd | |- ( ( g e. ( ~P A ^m _om ) /\ y e. _om ) -> ( ( g ` suc y ) C_ ( g ` y ) -> ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) ) ) |
| 50 | 49 | ralimdva | |- ( g e. ( ~P A ^m _om ) -> ( A. y e. _om ( g ` suc y ) C_ ( g ` y ) -> A. y e. _om ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) ) ) |
| 51 | 12 | ffnd | |- ( g e. ( ~P A ^m _om ) -> F Fn ~P A ) |
| 52 | imassrn | |- ( F " ran g ) C_ ran F |
|
| 53 | 12 | frnd | |- ( g e. ( ~P A ^m _om ) -> ran F C_ ~P A ) |
| 54 | 52 53 | sstrid | |- ( g e. ( ~P A ^m _om ) -> ( F " ran g ) C_ ~P A ) |
| 55 | fnfvima | |- ( ( F Fn ~P A /\ ( F " ran g ) C_ ~P A /\ U. ( F " ran g ) e. ( F " ran g ) ) -> ( F ` U. ( F " ran g ) ) e. ( F " ( F " ran g ) ) ) |
|
| 56 | 55 | 3expia | |- ( ( F Fn ~P A /\ ( F " ran g ) C_ ~P A ) -> ( U. ( F " ran g ) e. ( F " ran g ) -> ( F ` U. ( F " ran g ) ) e. ( F " ( F " ran g ) ) ) ) |
| 57 | 51 54 56 | syl2anc | |- ( g e. ( ~P A ^m _om ) -> ( U. ( F " ran g ) e. ( F " ran g ) -> ( F ` U. ( F " ran g ) ) e. ( F " ( F " ran g ) ) ) ) |
| 58 | incom | |- ( dom F i^i ran g ) = ( ran g i^i dom F ) |
|
| 59 | 13 | frnd | |- ( g e. ( ~P A ^m _om ) -> ran g C_ ~P A ) |
| 60 | 12 | fdmd | |- ( g e. ( ~P A ^m _om ) -> dom F = ~P A ) |
| 61 | 59 60 | sseqtrrd | |- ( g e. ( ~P A ^m _om ) -> ran g C_ dom F ) |
| 62 | dfss2 | |- ( ran g C_ dom F <-> ( ran g i^i dom F ) = ran g ) |
|
| 63 | 61 62 | sylib | |- ( g e. ( ~P A ^m _om ) -> ( ran g i^i dom F ) = ran g ) |
| 64 | 58 63 | eqtrid | |- ( g e. ( ~P A ^m _om ) -> ( dom F i^i ran g ) = ran g ) |
| 65 | 13 | fdmd | |- ( g e. ( ~P A ^m _om ) -> dom g = _om ) |
| 66 | peano1 | |- (/) e. _om |
|
| 67 | ne0i | |- ( (/) e. _om -> _om =/= (/) ) |
|
| 68 | 66 67 | mp1i | |- ( g e. ( ~P A ^m _om ) -> _om =/= (/) ) |
| 69 | 65 68 | eqnetrd | |- ( g e. ( ~P A ^m _om ) -> dom g =/= (/) ) |
| 70 | dm0rn0 | |- ( dom g = (/) <-> ran g = (/) ) |
|
| 71 | 70 | necon3bii | |- ( dom g =/= (/) <-> ran g =/= (/) ) |
| 72 | 69 71 | sylib | |- ( g e. ( ~P A ^m _om ) -> ran g =/= (/) ) |
| 73 | 64 72 | eqnetrd | |- ( g e. ( ~P A ^m _om ) -> ( dom F i^i ran g ) =/= (/) ) |
| 74 | imadisj | |- ( ( F " ran g ) = (/) <-> ( dom F i^i ran g ) = (/) ) |
|
| 75 | 74 | necon3bii | |- ( ( F " ran g ) =/= (/) <-> ( dom F i^i ran g ) =/= (/) ) |
| 76 | 73 75 | sylibr | |- ( g e. ( ~P A ^m _om ) -> ( F " ran g ) =/= (/) ) |
| 77 | 1 | isf34lem4 | |- ( ( A e. _V /\ ( ( F " ran g ) C_ ~P A /\ ( F " ran g ) =/= (/) ) ) -> ( F ` U. ( F " ran g ) ) = |^| ( F " ( F " ran g ) ) ) |
| 78 | 10 54 76 77 | syl12anc | |- ( g e. ( ~P A ^m _om ) -> ( F ` U. ( F " ran g ) ) = |^| ( F " ( F " ran g ) ) ) |
| 79 | 1 | isf34lem3 | |- ( ( A e. _V /\ ran g C_ ~P A ) -> ( F " ( F " ran g ) ) = ran g ) |
| 80 | 10 59 79 | syl2anc | |- ( g e. ( ~P A ^m _om ) -> ( F " ( F " ran g ) ) = ran g ) |
| 81 | 80 | inteqd | |- ( g e. ( ~P A ^m _om ) -> |^| ( F " ( F " ran g ) ) = |^| ran g ) |
| 82 | 78 81 | eqtrd | |- ( g e. ( ~P A ^m _om ) -> ( F ` U. ( F " ran g ) ) = |^| ran g ) |
| 83 | 82 80 | eleq12d | |- ( g e. ( ~P A ^m _om ) -> ( ( F ` U. ( F " ran g ) ) e. ( F " ( F " ran g ) ) <-> |^| ran g e. ran g ) ) |
| 84 | 57 83 | sylibd | |- ( g e. ( ~P A ^m _om ) -> ( U. ( F " ran g ) e. ( F " ran g ) -> |^| ran g e. ran g ) ) |
| 85 | 50 84 | imim12d | |- ( g e. ( ~P A ^m _om ) -> ( ( A. y e. _om ( ( F o. g ) ` y ) C_ ( ( F o. g ) ` suc y ) -> U. ( F " ran g ) e. ( F " ran g ) ) -> ( A. y e. _om ( g ` suc y ) C_ ( g ` y ) -> |^| ran g e. ran g ) ) ) |
| 86 | 30 85 | sylcom | |- ( A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) -> ( g e. ( ~P A ^m _om ) -> ( A. y e. _om ( g ` suc y ) C_ ( g ` y ) -> |^| ran g e. ran g ) ) ) |
| 87 | 86 | ralrimiv | |- ( A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) -> A. g e. ( ~P A ^m _om ) ( A. y e. _om ( g ` suc y ) C_ ( g ` y ) -> |^| ran g e. ran g ) ) |
| 88 | isfin3-3 | |- ( A e. V -> ( A e. Fin3 <-> A. g e. ( ~P A ^m _om ) ( A. y e. _om ( g ` suc y ) C_ ( g ` y ) -> |^| ran g e. ran g ) ) ) |
|
| 89 | 87 88 | imbitrrid | |- ( A e. V -> ( A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) -> A e. Fin3 ) ) |
| 90 | 6 89 | impbid2 | |- ( A e. V -> ( A e. Fin3 <-> A. f e. ( ~P A ^m _om ) ( A. y e. _om ( f ` y ) C_ ( f ` suc y ) -> U. ran f e. ran f ) ) ) |