This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | isf34lem1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐴 ∖ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | difeq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑎 ) ) | |
| 3 | 2 | cbvmptv | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) = ( 𝑎 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑎 ) ) |
| 4 | 1 3 | eqtri | ⊢ 𝐹 = ( 𝑎 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑎 ) ) |
| 5 | difeq2 | ⊢ ( 𝑎 = 𝑋 → ( 𝐴 ∖ 𝑎 ) = ( 𝐴 ∖ 𝑋 ) ) | |
| 6 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) | |
| 7 | 6 | biimpar | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) |
| 8 | difexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑋 ) ∈ V ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐴 ∖ 𝑋 ) ∈ V ) |
| 10 | 4 5 7 9 | fvmptd3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐴 ∖ 𝑋 ) ) |