This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | isf34lem4 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ 𝑋 ) = ∩ ( 𝐹 “ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | sspwuni | ⊢ ( 𝑋 ⊆ 𝒫 𝐴 ↔ ∪ 𝑋 ⊆ 𝐴 ) | |
| 3 | 1 | isf34lem1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑋 ⊆ 𝐴 ) → ( 𝐹 ‘ ∪ 𝑋 ) = ( 𝐴 ∖ ∪ 𝑋 ) ) |
| 4 | 2 3 | sylan2b | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝐹 ‘ ∪ 𝑋 ) = ( 𝐴 ∖ ∪ 𝑋 ) ) |
| 5 | 4 | adantrr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ 𝑋 ) = ( 𝐴 ∖ ∪ 𝑋 ) ) |
| 6 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) → ¬ 𝑏 ∈ ∪ 𝑋 ) | |
| 7 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) → 𝑏 ∈ 𝐴 ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) |
| 9 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → ¬ 𝑏 ∈ 𝑎 ) | |
| 10 | 8 9 | eldifd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 11 | simplrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) | |
| 12 | elunii | ⊢ ( ( 𝑏 ∈ ( 𝐴 ∖ 𝑎 ) ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) → 𝑏 ∈ ∪ 𝑋 ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ∪ 𝑋 ) |
| 14 | 13 | ex | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) → ( ¬ 𝑏 ∈ 𝑎 → 𝑏 ∈ ∪ 𝑋 ) ) |
| 15 | 6 14 | mt3d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) → 𝑏 ∈ 𝑎 ) |
| 16 | 15 | expr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) → ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) → ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 19 | n0 | ⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑐 𝑐 ∈ 𝑋 ) | |
| 20 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → 𝑋 ⊆ 𝒫 𝐴 ) | |
| 21 | 20 | sselda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ∈ 𝒫 𝐴 ) |
| 22 | 21 | elpwid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ⊆ 𝐴 ) |
| 23 | dfss4 | ⊢ ( 𝑐 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) = 𝑐 ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) = 𝑐 ) |
| 25 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ∈ 𝑋 ) | |
| 26 | 24 25 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) |
| 27 | difss | ⊢ ( 𝐴 ∖ 𝑐 ) ⊆ 𝐴 | |
| 28 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑐 ) ⊆ 𝐴 ) ) | |
| 29 | 27 28 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ) |
| 31 | difeq2 | ⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( 𝐴 ∖ 𝑎 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ) | |
| 32 | 31 | eleq1d | ⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) ) |
| 33 | eleq2 | ⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( 𝑏 ∈ 𝑎 ↔ 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) | |
| 34 | 32 33 | imbi12d | ⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ↔ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 35 | 34 | rspcv | ⊢ ( ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 36 | 30 35 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 37 | 26 36 | mpid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) |
| 38 | eldifi | ⊢ ( 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) → 𝑏 ∈ 𝐴 ) | |
| 39 | 37 38 | syl6 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) |
| 40 | 39 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝑐 ∈ 𝑋 → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) ) |
| 41 | 40 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( ∃ 𝑐 𝑐 ∈ 𝑋 → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) ) |
| 42 | 19 41 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝑋 ≠ ∅ → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) ) |
| 43 | 42 | impr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) |
| 44 | eluni | ⊢ ( 𝑏 ∈ ∪ 𝑋 ↔ ∃ 𝑐 ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) | |
| 45 | 29 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ) |
| 46 | 26 | adantlrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) |
| 47 | 46 | adantrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) |
| 48 | elndif | ⊢ ( 𝑏 ∈ 𝑐 → ¬ 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) | |
| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ¬ 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) |
| 50 | 47 49 | jcnd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ¬ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) |
| 51 | 34 | notbid | ⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ↔ ¬ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 52 | 51 | rspcev | ⊢ ( ( ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ∧ ¬ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → ∃ 𝑎 ∈ 𝒫 𝐴 ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 53 | 45 50 52 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ∃ 𝑎 ∈ 𝒫 𝐴 ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 54 | rexnal | ⊢ ( ∃ 𝑎 ∈ 𝒫 𝐴 ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ↔ ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) | |
| 55 | 53 54 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 57 | 56 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∃ 𝑐 ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 58 | 44 57 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝑏 ∈ ∪ 𝑋 → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 59 | 58 | con2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ¬ 𝑏 ∈ ∪ 𝑋 ) ) |
| 60 | 43 59 | jcad | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ) |
| 61 | 18 60 | impbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 62 | eldif | ⊢ ( 𝑏 ∈ ( 𝐴 ∖ ∪ 𝑋 ) ↔ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) | |
| 63 | vex | ⊢ 𝑏 ∈ V | |
| 64 | 63 | elintrab | ⊢ ( 𝑏 ∈ ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 65 | 61 62 64 | 3bitr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝑏 ∈ ( 𝐴 ∖ ∪ 𝑋 ) ↔ 𝑏 ∈ ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ) ) |
| 66 | 65 | eqrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐴 ∖ ∪ 𝑋 ) = ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ) |
| 67 | 5 66 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ 𝑋 ) = ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ) |
| 68 | 1 | compss | ⊢ ( 𝐹 “ 𝑋 ) = { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } |
| 69 | 68 | inteqi | ⊢ ∩ ( 𝐹 “ 𝑋 ) = ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } |
| 70 | 67 69 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ 𝑋 ) = ∩ ( 𝐹 “ 𝑋 ) ) |