This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iseralt . A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseralt.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iseralt.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iseralt.3 | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) | ||
| iseralt.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) | ||
| iseralt.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 0 ) | ||
| Assertion | iseraltlem1 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → 0 ≤ ( 𝐺 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseralt.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iseralt.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | iseralt.3 | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) | |
| 4 | iseralt.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) | |
| 5 | iseralt.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 0 ) | |
| 6 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 7 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 8 | 7 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → 𝑁 ∈ ℤ ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → 𝐺 ⇝ 0 ) |
| 11 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑁 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑁 ) ∈ ℂ ) |
| 13 | 1z | ⊢ 1 ∈ ℤ | |
| 14 | uzssz | ⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ | |
| 15 | zex | ⊢ ℤ ∈ V | |
| 16 | 14 15 | climconst2 | ⊢ ( ( ( 𝐺 ‘ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ⇝ ( 𝐺 ‘ 𝑁 ) ) |
| 17 | 12 13 16 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ⇝ ( 𝐺 ‘ 𝑁 ) ) |
| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐺 : 𝑍 ⟶ ℝ ) |
| 19 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 20 | 19 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 21 | 18 20 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 22 | eluzelz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑛 ∈ ℤ ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ℤ ) |
| 24 | fvex | ⊢ ( 𝐺 ‘ 𝑁 ) ∈ V | |
| 25 | 24 | fvconst2 | ⊢ ( 𝑛 ∈ ℤ → ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) = ( 𝐺 ‘ 𝑁 ) ) |
| 26 | 23 25 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) = ( 𝐺 ‘ 𝑁 ) ) |
| 27 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑁 ) ∈ ℝ ) |
| 28 | 26 27 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) ∈ ℝ ) |
| 29 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 30 | 18 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝐺 : 𝑍 ⟶ ℝ ) |
| 31 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ 𝑍 ) | |
| 32 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 33 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 34 | 31 32 33 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
| 35 | 30 34 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 36 | simpl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ) | |
| 37 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑁 ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 38 | 33 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 39 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 40 | 38 39 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 41 | 36 37 40 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... ( 𝑛 − 1 ) ) ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 42 | 29 35 41 | monoord2 | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑁 ) ) |
| 43 | 42 26 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) ) |
| 44 | 6 9 10 17 21 28 43 | climle | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → 0 ≤ ( 𝐺 ‘ 𝑁 ) ) |