This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a left-inverse I ( x ) . See isdrngrd for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013) Remove hypothesis. (Revised by SN, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrngd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| isdrngd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | ||
| isdrngd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) | ||
| isdrngd.u | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) | ||
| isdrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| isdrngd.n | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | ||
| isdrngd.o | ⊢ ( 𝜑 → 1 ≠ 0 ) | ||
| isdrngd.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ 𝐵 ) | ||
| isdrngd.k | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝐼 · 𝑥 ) = 1 ) | ||
| Assertion | isdrngd | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrngd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | isdrngd.t | ⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) | |
| 3 | isdrngd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) | |
| 4 | isdrngd.u | ⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) | |
| 5 | isdrngd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | isdrngd.n | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | |
| 7 | isdrngd.o | ⊢ ( 𝜑 → 1 ≠ 0 ) | |
| 8 | isdrngd.i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ 𝐵 ) | |
| 9 | isdrngd.k | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝐼 · 𝑥 ) = 1 ) | |
| 10 | difss | ⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 | |
| 11 | 10 1 | sseqtrid | ⊢ ( 𝜑 → ( 𝐵 ∖ { 0 } ) ⊆ ( Base ‘ 𝑅 ) ) |
| 12 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | |
| 13 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | 13 14 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 16 | 12 15 | ressbas2 | ⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ ( Base ‘ 𝑅 ) → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 17 | 11 16 | syl | ⊢ ( 𝜑 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 18 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 19 | 1 18 | eqeltrdi | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 20 | difexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V ) | |
| 21 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 22 | 13 21 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 23 | 12 22 | ressplusg | ⊢ ( ( 𝐵 ∖ { 0 } ) ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 24 | 19 20 23 | 3syl | ⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 25 | 2 24 | eqtrd | ⊢ ( 𝜑 → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 26 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) | |
| 27 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) | |
| 28 | 14 21 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 5 28 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 | 29 | 3expib | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 31 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 32 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 33 | 31 32 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 34 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 35 | 34 1 | eleq12d | ⊢ ( 𝜑 → ( ( 𝑥 · 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 36 | 30 33 35 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) ) |
| 37 | 36 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 38 | 37 | 3adant2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 39 | 38 | 3adant3r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 40 | eldifsn | ⊢ ( ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ 𝐵 ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) | |
| 41 | 39 6 40 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 42 | 27 41 | syl3an3b | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 43 | 26 42 | syl3an2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 44 | 14 21 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 45 | 44 | ex | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) |
| 46 | 5 45 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) |
| 47 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) |
| 48 | 31 32 47 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 49 | eqidd | ⊢ ( 𝜑 → 𝑧 = 𝑧 ) | |
| 50 | 2 34 49 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 51 | eqidd | ⊢ ( 𝜑 → 𝑥 = 𝑥 ) | |
| 52 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑦 · 𝑧 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) |
| 53 | 2 51 52 | oveq123d | ⊢ ( 𝜑 → ( 𝑥 · ( 𝑦 · 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 54 | 50 53 | eqeq12d | ⊢ ( 𝜑 → ( ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) |
| 55 | 46 48 54 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 56 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐵 ) | |
| 57 | eldifi | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → 𝑦 ∈ 𝐵 ) | |
| 58 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐵 ∖ { 0 } ) → 𝑧 ∈ 𝐵 ) | |
| 59 | 56 57 58 | 3anim123i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑧 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) |
| 60 | 55 59 | impel | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑧 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 61 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 62 | 14 61 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 63 | 5 62 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 64 | 63 4 1 | 3eltr4d | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 65 | eldifsn | ⊢ ( 1 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 1 ∈ 𝐵 ∧ 1 ≠ 0 ) ) | |
| 66 | 64 7 65 | sylanbrc | ⊢ ( 𝜑 → 1 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 67 | 14 21 61 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 68 | 67 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
| 69 | 5 68 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
| 70 | 2 4 51 | oveq123d | ⊢ ( 𝜑 → ( 1 · 𝑥 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 71 | 70 | eqeq1d | ⊢ ( 𝜑 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
| 72 | 69 31 71 | 3imtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 1 · 𝑥 ) = 𝑥 ) ) |
| 73 | 72 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 74 | 73 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 75 | 26 74 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 76 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 1 ≠ 0 ) |
| 77 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → 𝐼 = 0 ) | |
| 78 | 77 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → ( 𝐼 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 79 | 9 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → ( 𝐼 · 𝑥 ) = 1 ) |
| 80 | 31 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 81 | 80 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 82 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 83 | 14 21 82 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 84 | 5 81 83 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 85 | 2 3 51 | oveq123d | ⊢ ( 𝜑 → ( 0 · 𝑥 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 0 · 𝑥 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 87 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
| 88 | 84 86 87 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 0 · 𝑥 ) = 0 ) |
| 89 | 88 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → ( 0 · 𝑥 ) = 0 ) |
| 90 | 78 79 89 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → 1 = 0 ) |
| 91 | 76 90 | mteqand | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ≠ 0 ) |
| 92 | eldifsn | ⊢ ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ) | |
| 93 | 8 91 92 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 94 | 26 93 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 95 | 26 9 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝐼 · 𝑥 ) = 1 ) |
| 96 | 17 25 43 60 66 75 94 95 | isgrpd | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ) |
| 97 | 3 | sneqd | ⊢ ( 𝜑 → { 0 } = { ( 0g ‘ 𝑅 ) } ) |
| 98 | 1 97 | difeq12d | ⊢ ( 𝜑 → ( 𝐵 ∖ { 0 } ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 99 | 98 | oveq2d | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 100 | 99 | eleq1d | ⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ↔ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) |
| 101 | 100 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ) ↔ ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) ) |
| 102 | 5 96 101 | mpbi2and | ⊢ ( 𝜑 → ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) |
| 103 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) | |
| 104 | 14 82 103 | isdrng2 | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) |
| 105 | 102 104 | sylibr | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |